Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spastic paraplegia type 47 in Russian patients

https://doi.org/10.25557/2073-7998.2022.09.56-60

Abstract

The reason of SPG47 is homozygous and compound-heterozygous mutations in AP4B1 gene. SPG47 is characterized by microcephaly, corpus callosum hypoplasia, neonatal muscular hypotension, followed by spasticity and severe mental retardation. Variant c.1160_1161del was identified in six patients from unrelated, non-consanguineous families. Was performed haplotype analysis AP4B1 gene for four from six patients on chromosomes with this variant. As a result, there wasn’t found the only haplotype linked to this variant. Therefore, this variant can be a “hot spot” mutation, or could have spread as a result the founder effect.

About the Authors

V. A. Kadnikova
Research Centre for Medical Genetics
Russian Federation


G. E. Rudenskaya
Research Centre for Medical Genetics
Russian Federation


O. L. Shatokhina
Research Centre for Medical Genetics
Russian Federation


D. M. Guseva
Research Centre for Medical Genetics
Russian Federation


O. P. Ryzhkova
Research Centre for Medical Genetics
Russian Federation


References

1. Ebrahimi-Fakhari D., Behne R., Davies A.K., Hirst J. AP-4-Associated Hereditary Spastic Paraplegia. 2018 Dec 13. In: Adam M.P., Everman D.B., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022.

2. Tuysuz B., Bilguvar K., Kocer N., et al. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. // Am. J. of Med. Genet. Part A. 2014;164A(7):1677-1685.

3. Abou Jamra R., Philippe O., Raas-Rothschild A., et a. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am. J. of Hum. Genet. 2011;88(6):788-795.

4. HGMD: https://www.portal.biobase-international.com/hgmd/pro/start.php.

5. Руденская Г.Е., Гусева Д.М., Миронович О.Л., и др. AP4-ассоциированные наследственные спастические параплегии. Ж. Неврол. Психиатр. Им. С. С. Корсакова. 2021; 121(2):71-78.

6. Кадникова В.А., Рыжкова О.П., Руденская Г.Е., Поляков А.В. Наследственные спастические параплегии: молекулярно-генетическое разнообразие и молекулярно-генетическая диагностика. Усп. совр. биол. 2018; 138(5):462-475.

7. D’Amore A., Tessa A., Casali C., et al. Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study. Front. in neurol. 2018; 9:981.

8. Elert-Dobkowska E., Stepniak I., Krysa W.,et al. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics. 2019;20(1):27-38.

9. Ishiura H., Takahashi Y., Hayashi T.,et al. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J. Hum. Genet. 2014;59(3):163-172.

10. Koh K., Ishiura H., Tsuji S., Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain sciences. 2018; 8(8):153.

11. Lu C., Li L. X., Dong H. L., et al. Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J. Mol. Med. (Berl.). 2018; 96(7):701-712.

12. Morais S., Raymond L., Mairey M., et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur. J. of Hum. Genet. 2017; 25(11):1217-1228.

13. Schüle R., Wiethoff S., Martus P., et al. Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann. of Neurol. 2016;79(4):646-658.

14. Travaglini L., Aiello C., Stregapede F., et al. The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenet. 2018;19(2):111-121.

15. База вариантов нуклеотидных последовательностей «RuExAc» Доступ через онлайн-сервис «NGSData», http://ngs-data.ru/vcfdb/.

16. Ebrahimi-Fakhari D., Cheng C., Dies K., et al. Clinical and genetic characterization of AP4B1-associated SPG47. Am. J. of Med. Genet. Part A. 2018;176(2):311-318.

17. Teinert J., Behne R., D’Amore A., et al.: Generation and characterization of six human induced pluripotent stem cell lines (iPSC) from three families with AP4B1-associated hereditary spastic paraplegia (SPG47). Stem cell research. 2019; 40:101575.

18. Behne R., Teinert J., Wimmer M., et al. Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Hum. mol. genet. 2020; 29(2):320-334.

19. Stodberg T., Tomson T., Barbaro M., et al. Epilepsy syndromes, etiologies, and the use of next-generation sequencing in epilepsy presenting in the first 2 years of life: A population-based study. Epilepsia.2020;61(11):2486-2499.

20. Szczaluba K., Mierzewska H., Smigiel R., et al. AP4B1-associated hereditary spastic paraplegia: expansion of phenotypic spectrum related to homozygous p.Thr387fs variant. J. of Appl. Genet. 2020;61(2):213-218.


Review

For citations:


Kadnikova V.A., Rudenskaya G.E., Shatokhina O.L., Guseva D.M., Ryzhkova O.P. Spastic paraplegia type 47 in Russian patients. Medical Genetics. 2022;21(9):56-60. (In Russ.) https://doi.org/10.25557/2073-7998.2022.09.56-60

Views: 657


ISSN 2073-7998 (Print)