Preview

Медицинская генетика

Расширенный поиск

ГЕНЕТИКА РАЗВИТИЯ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ

https://doi.org/10.1234/XXXX-XXXX-2013-1-3-14

Полный текст:

Аннотация

Рассматриваются развитие, структура и функция вестибулярного аппарата и их генетический контроль. Как известно, вестибулярный аппарат развивается из общего со слуховым аппаратом отического зачатка. Их разделение контролируется генетически. Общим для обеих систем является наличие сенсорных волосковых клеток. Различают пять специфических участков волосковых клеток вестибулярного аппарата, являющихся местом восприятия линейных ускорений, угловых ускорений, а также гравитации и вибрационных колебаний. Отличительные особенности развивающегося вестибулярного аппарата — сохранение киноцилий, выполняющих ведущую роль в образовании стереоцилий волосковыми клетками, а также образование отоконий.

 

Об авторе

В. А. Мглинец
Федеральное государственное бюджетное учреждение «Медико-генетический научный центр» Российской академии медицинских наук
Россия

Россия, 115478, Москва, ул. Москворечье, д. 1



Список литературы

1. Мглинец В.А. Генетика морфогенеза внутреннего уха позвоночных // Медицинская генегика. — 2010. — Т. 9(5). — C. 3—11.

2. Мглинец В.А. Генетические механизмы формирования слуховой улитки и кортиева органа // Медицинская генетика. - 2011. - Т. 10(5). - C. 3-14.

3. Acampora D., Merlo G.R., Paleari L. et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5 // Deveiopment. — 1999. — Vol. 126. — P. 3795—3809.

4. Adamska M., Herbrand H., Adamski M. et al. FGFs control patterning of the inner ear but are not able to induce the full ear program // Mech. Dev. — 2001a. — Vol. 109. — P. 303—313.

5. Adamson C.L., Reid M.A., Davis R.L. Opporiie actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons // J. Neurosci. — 2002. — Vol. 22. — P. 1385—1396.

6. Agerman K., Hjerling-Leffler J., Blanchard M.P. et al. BDNF gene replacement reveals multiple mechanisms for establishing neu-rotrophin specificity during sensory nervous system development // Deveiopment. — 2003. — Vol. 130. — P. 1479—1491.

7. Axelrod J.D. Basal bodies, kinocilia and planar cell polarity // Nature Genetics. — 2008. — Vol. 40. — P. 10—11.

8. Begbie J., Ballivef M., Graham A. Early steps in the production of sensory neurons by the neurogenic placodes // Mol. Cell Neu-rosci. — 2002. — Vol. 21. — P. 502—511.

9. Bermingham N.A., Hassan B.A., Price S.D. et al. Math1: An essential gene for the generation of inner ear hair cells // Science. — 1999. — Vol. 284. — P. 1837—1841.

10. Bober E., Rinkwitz S., Herbrand H. Moiecuiar basis of otic commitment and morphogenesis: A role for homeodomain-contai-ning transcription factors and signaling molecules // Current Topics in Deveiopmental Bioiogy. — 2003. — Vol. 57. — P. 151 — 175.

11. Bok J., Bronner-Fraser M., Wu D.K. Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear // Deveiopment. — 2005. — Vol. 132. — P. 2115—2124.

12. Bok J., Dolson D.K., Hill P. et al. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear // Deieiopment. — 2007. — Vol. 134. — P. 1713—1722.

13. Boka J., Raftb S., Konga K.-A. et al. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear // PNAS. — 2011. — Vol. 108(1). — P. 161—166.

14. Brigande J.V., Iten L.E., Fekete D. A fate map of chick otic cup closure reveals lineage boundaries in the dorsal otocyst // Dev. Biol. — 2000a. — Vol. 227. — P. 256—270.

15. Brigande J.V., Kiernan A.E., Gao X. et al. Moiecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? // Proc. Natl. Acad. Sci. USA. — 2000. — Vol. 97. — P. 11700—11706.

16. Brooker R., Hozumi K., Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear // De-vel opment. — 2006. — Vol. 133. — P. 1277—1286.

17. Brumwell C.L., Hossain W.A., Morest D.K., Bernd P. Role for basic fibroblast growth factor (FGF-2) in tyrosine kinase (TrkB) expression in the early development and innervation of the auditory receptor: In vitro and in siiu studies // Exp. Neurol. — 2000. — Vol. 162. — P. 121—145.

18. Bryant J., Goodyear R.J., Richardson G.P. Sensory organ development in the inner ear: Molecular and cellular mechanisms // Br. Med. Bull. — 2002. — Vol. 63. — P. 39—57.

19. Camarero G., Leon Y., Viliar A. et al. Iniuiin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons // Dev. Biol. — 2003. — Vol. 262(2). — P. 242—253.

20. Cantos R., Cole L.K., Acampora D. et al. Patterning of the mammaiian cochiea // Proc. Natl. Acad. Sci. USA. — 2000. — Vol. 97. — P. 11707—11713.

21. Chang W., Nunes F.D., De Jesus-Escobar J.M. et al. Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear // Dev. Biol. — 1999. — Vol. 216. — P. 369—381.

22. Chang W., Lin Z., Kulessa H. et al. Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements // PLoS Genetics. — 2008. — Vol. 4: e1000050.

23. Ciuman R.R. Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease // J. Laryngology & Otoiogy. — 2011. — Vol. 125. — P. 991—1003.

24. Cohen-Salmon M., El-Amraoui A., Leibovici M., Petit C. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear // Proc. Natl. Acad. Sci. USA. — 1997. — Vol. 94. — P. 14450—14455.

25. Cole L.K., Le Roux I., Nunes F. et al. Sensory organ generation in the chicken inner ear: Contributions of bone morphogenetic protein 4, serrate 1, and lunatic fringe // J. Comp. Neurol. — 2000. — Vol. 424. — P. 509—520.

26. Dabdoub A., Puligilla C., Jones J.M. et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the deveioping cochiea // Proc. Natl. Acad. Sci. USA. — 2008. — Vol. 105. — P. 18396—18401.

27. Deans M.R., Antic D., Suyama K. et al. Asymmetric distribution of prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear // J. Neurosci. — 2007. — Vol. 27. — P. 3139—3147.

28. Denman-Johnson K., Forge A. Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse // J. Neurocytol. — 1999. — Vol. 28(10—11). — P. 821—835.

29. Dror A.A., Politi Y., Shahin H. et al. Calcium Oxalate Stone Formation in the Inner Ear as a Result of an Slc26a4 Mutation // J. Biol. Chm. — 2010. — Vol. 285(28). — P. 21724—21735.

30. Elkan-Miller T., Ulitsky I., Hertzano R. et al. Integration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel MicroRNA Regulation of Targets in the Mammalian Inner Ear // PLoS ONE. — 2011. — Vol. 6(4). — P. e18195.

31. Farinas I., Jones K.R., Tessarollo L. et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression // J. Neurosci. — 2001. — Vol. 21. — P. 6170—6180.

32. Fekeie D.M., Homburger S.A., Waring M.T. et al. Involvement of programmed cell death in morphogenesis of the vertebrate inner ear // Deveiopment. — 1997. — Vol. 124. — P. 2451—2461.

33. Fekete D.M., Wu D.K. Revisiting cell fate specification in the inner ear // Curr. Opin. Neurobiol. — 2002. — Vol. 12. — P. 35—42.

34. Fritzsch B., Signore M., Simeone A. Otxl null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears // Dev. Genes Evol. — 2001. — Vol. 211. — P. 388—396.

35. Fritzsch B., Tessarolio L., Coppoia E., Reichardt L.F. Neu-rotrophins in the ear: their roies in sensory neuron survival and fiber guidance // Prog. Brain Res. — 2004. — Vol. 146. — P. 265—278.

36. Gao W.-Q. Hair cell deveiopment in higher vertebrates // Current Topics in Deveiopmenial Bioiogy. — 2003. — Vol. 57. — P. 293—319.

37. Gap C., Wang G., Amack J.D., Mitchell D.R. Odal6/Wdr69 Is Essential for Axonemal Dynein Assembly and Ciliary Motility During Zebrafish Embryogenesis // Dev. Dyn. — 2010. — Vol. 239. — P. 2190—2197.

38. Geriach L.M., Hutson M.R., Germilier J.A. et al. Addition of the BMP antagonist, noggin, disrupts avian inner ear development // Deveiopment. — 2000. — Vol. 127. — P. 45—54.

39. Goodyear R.J., Kwan T., Oh S.H. et al. The cell adheiion molecule BEN defines a prosensory patch in the developing avian otocyst // J. Comp. Neurol. — 2001. — Vol. 434. — P. 275—288.

40. Goodyear R.J., Forge A., Legan P.K., Richardson G.P. Symmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells // J. Compar. Neurology. — 2010. — Vol. 518(21). — P. 4288—4297.

41. Graii M., Kachar B. Myosin VIIa and sans locaiizaiion at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction // PnAS. — 2011. — Vol. 108(28). — P. 11476—11481.

42. Hammond K.L., Loynes H.E., Folarin A.A. et al. Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle // Deveiopment. — 2003. — Vol. 130. — P. 1403—1417.

43. Hashino E., Dolnick R.Y., Cohan C.S. Developing vestibular ganglion neurons switch trophic sensitivity from BDNF to GDNF after target innervation // J. Neurobiol. — 1999a. — Vol. 38. — P. 414—427.

44. Haugas M., Lillevali K., Hakanen J., Salminen M. Gata2 Is Required for the Development of Inner Ear Semicircular Ducts and the Surrounding Perilymphatic Space // Dev. Dyn. — 2010. — Vol. 239. — P. 2452—2469.

45. Herbrand H., Guthrie S., Hadrys T. et al. Two regulatory genes, cNkx5-1 and cPax2, show different responies to local signals during otic placode and vesicle formation in the chick embryo // Deveiopment. — 1998. — Vol. 125. — P. 645—654.

46. Herizano R., Dror A.A., Montcouquiol M. et al. Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system // Eur. J. Neurosci. — 2007. — Vol. 25. — P. 999—1005.

47. Hidalgo-Sanchez M., Alvarado-Mallart R., Alvarez I.S. Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development // Mech. Dev. — 2000. — Vol. 95. — P. 225—229.

48. Hughes I., Thalmann I., Thalmann R., Ornitz D.M. Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development // Brain Res. — 2006. — Vol. 1091. — P. 58—74.

49. Hughes I., Binkley J., Hurie B.B. Identification of the Oto-petrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 4.

50. Hwang C.H., Simeone A., Lai E., Wu D.K. Foxg1 is required for proper separation and formation of sensory cristae during inner ear development // Dev Dyn. — 2009. — Vol. 238. — P. 2725—2734.

51. Karis A., Paia I., Van Doorninck J.H. et al. Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear // J. Comp. Neurol. — 2001. — Vol. 429. — P. 615—630.

52. Kawakami Y., Capdeviia J., Buscher D. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo // Cell. — 2001. — Vol. 104. — P. 891—900.

53. Kiernan A.E., Steel K.P., Fekete D.M. Deveiopment of the mouse inner ear // Mouse Development: Patterning Morphogenesis and Organogenesis / J. Rossant, P. Tam, Eds. — 2002. — P. 539—566. — San Diego: Academic Press.

54. Kiernan A.E., Pelling A.L., Leung K.K. et al. Sox2 Is Required for Sensory Organ Development in the Mammalian Inner Ear // Nature. — 2005. — Vol. 434(7036). — P. 1031 — 1035.

55. Kim W.Y., Fritzsch B., Serls A. et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during de-veiopment // Deveiopment. — 2001. — Vol. 128. — P. 417—426.

56. Lang H., Fekete D.M. Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells // Dev. Biol. — 2001. — Vol. 234. — P. 120—137.

57. Leibovici M., Verpya E., Goodyear R.J. et al. Initial characterization of kinocilin, a protein of the hair cell kinocilium // Hearing Research. — 2005. — Vol. 203(1—2). — P. 144—153.

58. Li S., Price S.M., Cahill H., Ryugo D.K. et al. Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene // Development. — 2002. — Vol. 129. — P. 3523—3532.

59. Lin Z., Cantos R., Patente M., Wu D.K. Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaiing // Deveiopment. — 2005. — Vol. 132. — P. 2309—2318.

60. Liu W., Oh S.H., Kang Y.et al. Bone morphogenetic protein 4 (BMP4): a regulator of capsule chondrogenesis in the developing mouse inner ear // Dev. Dyn. — 2003. — Vol. 226. — P. 427—438.

61. Mahmood R., Mason I.J., Morriss-Kay G.M. Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos // Anat. Embryol. — 1996. — Vol. 194. — P. 13—22.

62. Martin P., Swanson G.J. Descriptive and experimental analysis of the epithelial remodellings that control semicircular canal formation in the deveioping mouse inner ear // Dev. Biol. — 1993. — Vol. 159. — P. 549—558.

63. McKay I.J., Lewis J., Lumsden A. The role of FGF-3 in early inner ear development: An analysis in normal and kreisler mutant mice // Dev. Biol. — 1996. — Vol. 174. — P. 370—378.

64. Merlo G.R., Paleari L., Mantero S. et al. The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediaied pathway // Dev. Biol. — 2002. — Vol. 248. — P. 157—169.

65. Meyers E.N., Lewandoski M., Martin G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination // Nat. Genet. — 1998. — Vol. 18. — P. 136—141.

66. Moravec W.J., Peterson E.H. Differences Between Stereoci-lia Numbers on Type I and Type II Vestibular Hair Cells // J. Neurophysiol. — 2004. — Vol. 92(5). — P. 3153—3160.

67. Morsli H., Choo D., Ryan A., Johnson R., Wu D.K. Development of the mouse inner ear and origin of its sensory organs // J. Neurosci. — 1998. — Vol. 18. — P. 3327—3335.

68. Morsli H., Tuorto F., Choo D. et al. Otx1and Otx2 activities are required for the normal deveiopment of the mouse inner ear // Deveiopment. — 1999. — Vol. 126. — P. 2335—2343.

69. Mothe A.J., Brown I.R. Expression of mRNA encoding extracellular matrix glycoproteins SPARC and SC1 is temporally and spatially regulated in the developing cochlea of the rat inner ear // Hear Res. — 2001. — Vol. 155. — P. 161 — 174.

70. Narins P.M., Lewis E.R. The vertebrate ear as an exqui site seismic sensor // J. Acoust. Soc. Am. — 1984. — Vol. 76. — P. 1384—1387.

71. Pasqualetti M., Neun R., Davenne M., Rijli F.M. Retinoic acid rescues inner ear defects in Hoxal deficient mice // Nature genetics. — 2001. — Vol. 29(1). — P. 34—39.

72. Pauley S., Wright T.J., Pirvola U. Expression and function of FGF10 in mammalian inner ear development // Dev. Dyn. — 2003. — Vol. 227. — P. 203—215.

73. Pirvola U., Spencer-Dene B., Xing-Qun L. et al. FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis // J. Neurosci. — 2000. — Vol. 20. — P. 6125—6134.

74. Ponnio T., Burton Q., Pereira F.A. The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear // Mol. Cell. Biol. — 2002. — Vol. 22. — P. 935—945.

75. Postigo A., Calella A.M., Fritzsch B. et al. Distinct requirements for TrkB and TrkC signaiing in target innervation by sensory neurons // Genes Dev. — 2002. — Vol. 16. — P. 633—645.

76. Pote K.G., Ross M.D. Each Otoconia polymorph has a protein unique to that poiymorph // Comp. Biochem. Phyiiol. B. — 1991. — Vol. 98. — P. 287—295.

77. Raft S., Nowotschin S., Liao J., Morrow B.E. Suppression of neural fate and control of inner ear morphogenesis by Tbx1 // Development. — 2004. — Vol. 131. — P. 1801—1812.

78. Raphael Y., Volk T., Crossin K.L. et al. The moduiation of cell adhesion molecule expression and intercellular junction formation in the deieioping aviin inner ear // Dev. Biol. — 1988. — Vol. 128. — P. 222—235.

79. Riccomagno M.M., Martinu L., Mulheisen M. et al. Specification of the mammalian cochlea is dependent on Sonic hedgehog // Genes Dev. — 2002. — Vol. 16. — P. 2365—2378.

80. Riccomagno M.M., Takada S., Epstein D.J. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roies of Shh // Genes Dev. — 2005. — Vol. 19. — P. 1612—1623.

81. Robledo R.F., Lufkin T. Dlx5 and Dlx6 homeobox genes are required for specification of the mammalian vestibular apparatus // Genesis. — 2006. — Vol. 44. — P. 425—437.

82. Romand R. The Roies of Reiinoic Acid during Inner Ear Development 2003 // Current Topics in Developmental Biology. — 2003. — Vol. 57. — P. 261—291.

83. Salminen M., Meyer B.I., Bober E., Gruss P. Netrin 1 is required for semicircular canal formation in the mouse inner ear // Deveiopment. — 2000. — Vol. 127. — P. 13—22.

84. Scott D.A., Karniski L.P. Human pendrin expressed in Xe-nopus laevis oocytes mediates chloride/formate exchange // Am. J. Physiol. Cell Physiol. — 2000. — Vol. 278. — P. 207—211.

85. Soleimani M., Greeley T., Petrovic S. et al. Pendrin: an apical C1-/OH-/HCO3- exchanger in the kidney cortex // Am. J. Physiol. Renal Physiol. — 2001. — Vol. 280. — P. F356—F364.

86. Spoon C., Grant W. Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler—Bernoulli and Timoshenko beam analysis // J. Exp. Biol. — 2011. — Vol. 214. — P. 862—870.

87. Thalmann R., Ignaiova E., Kachar B. et al. Development and maintenance of otoconia: biochemical considerations // Ann. N.Y. Acad. Sci. — 2001. — Vol. 942. — P. 162—178.

88. Thomas J., Morle L., Soulavie F. et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia // Bi ol. Cell. — 2010. — Vol. 102 (9). — P. 499—513.

89. Tumarkin A. Stereocilia versus kinocilia. Part II: The vesti-buiar sensors // J. Laryngol. Otol. — 1986. — Vol. 100. — P. 1107—1114.

90. Valk W.L., Oei M.L.Y.M., Segenhout J.M. et al. The Glyco-calyx and Stereociliary Interconnections of the Vestibular Sensory Epithelia of the Guinea Pig // ORL. — 2002. — Vol. 64. — P. 242—246.

91. Verpy E., Leibovici M., Petit C. Characterization of otoco-nin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals // Proc. Natl. Acad. Sci. U.S.A. — 1999. — Vol. 96. — P. 529—534.

92. Wang Y., Kowalski P.E., Thalmann I. et al. Otoconin-90, the mammalian otoconial matrix protein contains two domains of homology to secretory phospholipase A2 // Proc. Natl Acad. Sci. USA. — 1998. — Vol. 95. — P. 15345—15350.

93. Wang W., Chan E.K., Baron S., Van De Water T. Hmx2 homeobox gene control of murine vestibular morphogenesis // Development. — 2001. — Vol. 128. — P. 5017—5029.

94. Witte M.C., Montcouquiol M., Corwin J.T. Regeneration in avian hair cell epithelia: Identification of intracellular signals required for S-phase enriy // Eur. J. Neurosci. — 2001. — Vol. 14. — P. 829—838.

95. Wright T.J., Mansour S.L. Fgf3 and Fgf10 are required for mouse otic placode induction // Development. — 2003. — Vol. 130. — P. 3379—3390.

96. Wu D.K., Oh S.H. Sensory organ generation in the chick inner ear // J. Neurosci. — 1996. — Vol. 16. — P. 6454—6462.

97. Xiang M., Gan L., Li D. et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development // Proc. Natl. Acad. Sci. USA. — 1997. — Vol. 94. — P. 9445—9450.

98. Yamoah E.N., Lumpkin E.A., Dumont R.A. et al Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia // J. Neurosci. — 1998. — Vol. 18. — P. 610—624.

99. Zheng J., Gao W.Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears // Nat. Neu-rosci. — 2000. — Vol. 3. — P. 580—586.

100. Zheng J., Shou J., Guillemot F. Hes1 is a negative regulator of inner ear hair cell differentiation // Development. — 2000. — Vol. 127. — P. 4551—4560.

101. Zine A., Aubert A., Qiu J. et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear // J. Neurosci. — 2001. — Vol. 21. — P. 4712—4720.

102. Zou D., Silvius D., Rodrigo-Blomqvist S. et al. Eyal regulates the growth of otic epithelium and interacts with Pax2 during the deveiopment of all sensoiy areas in the inner ear // Dev. Biol. — 2006. — Vol. 298. — P. 430—441.

103. Zou D., Erickson C., Kim E.-H. et al. Eye1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear // Human Mol. Genet. — 2008. — Vol. 17(21). — P. 3340—335.

104. Zwaenepoel I., Mustapha M., Leibovici M. et al. Otoanco-rin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22 // Proc. Natl Acad. Sci. USA. — 2002. — Vol. 99. — P. 6240—6245.


Для цитирования:


Мглинец В.А. ГЕНЕТИКА РАЗВИТИЯ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ. Медицинская генетика. 2013;12(1):3-14. https://doi.org/10.1234/XXXX-XXXX-2013-1-3-14

For citation:


Mglinets V.A. GENETICS OF VESTIBULAR SYSTEM. Medical Genetics. 2013;12(1):3-14. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-1-3-14

Просмотров: 169


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)