Preview

Medical Genetics

Advanced search

Intergenic interactions and the contribution of polymorphic gene loci of enzymes involved in free radical processes in pathozoospermia

https://doi.org/10.25557/2073-7998.2021.11.36-44

Abstract

Background. About 40-50% of male infertility cases are due to pathozoospermia. Assessment of gene - gene interactions associated with pathospermia is an important task. Aim: to analyze the intergenic interactions of PON1 (Q192R), SOD1 (G7958A), CAT (C262T), NOS3 (C786T) and hOGG1 (Ser326Cys) polymorphisms in pathozoospermia. Methods. The study included 130 residents of the Rostov region. The comparison group consisted of 80 men with pathospermia, aged 23 to 48 years. The control group was formed from 50 sperm donors, collaborated with «The center of human reproduction and IVF». Determination of SNP was carried out using allele-specific polymerase chain reaction. Differences in the distribution of allelic variants of genes in the examined groups were assessed using the χ2 criterion. The risk of developing pathozoospermia was judged by the odds ratio. Modeling of intergenic interactions of polymorphic loci of PON1, SOD1, NOS3, CAT, hOGG1 genes was performed using the Multifactor Dimensionality Reduction software. Results. As a result of the study, the frequencies of genotypes and alleles were determined for polymorphic variants of the genes of enzymes involved in free radical processes in men with pathozoospermia. A significant model of intergenic interactions of polymorphic loci of the studied genes was revealed, affecting the risk of developing pathozoospermia, characterized by a cross-validation coefficient of 10/10 and a prediction accuracy of 78% (χ2 = 36.74 (p <0.0001), OR = 12.27, 95% CI 5.09 - 29.55). Conclusions. As a result of the analysis of intergenic interactions of polymorphic variants of the PON1, SOD1, NOS3, CAT, hOGG1 genes in the development of pathozoospermia using the Multifactor Dimensionality Reduction method, statistically significant associations were found that lead to an increase in the risk of developing this pathology.

About the Authors

K. G. Savikina
LLC “Center for Human Reproduction and IVF”
Russian Federation


E. V. Mashkina
Academy of Biology and Biotechnology Southern Federal University
Russian Federation


A. A. Aleksandrova
Academy of Biology and Biotechnology Southern Federal University
Russian Federation


T. P. Shkurat
Academy of Biology and Biotechnology Southern Federal University
Russian Federation


S. V. Lomteva
LLC “Center for Human Reproduction and IVF”
Russian Federation


References

1. Fainberg J., Kashanian J.A. Recent advances in understanding and managing male infertility. F1000Research. 2019;(8). doi: 10.12688/f1000research.17076.1

2. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cellular and Molecular Life Sciences 2020;77(1):93-113. https://doi.org/10.1007/s00018-019-03253-8

3. Choy J.T., Eisenberg M.L. Male infertility as a window to health. Fertility and sterility. 2018;110(5):810-814. https://doi.org/10.1016/j.fertnstert.2018.08.015

4. Hayden R.P., Flannigan R, Schlegel P.N. The role of lifestyle in male infertility: diet, physical activity, and body habitus. Current urology reports. 2018;19(7):1-10. https://doi.org/10.1007/s11934-018-0805-0

5. Lotti F., Maggi M. Sexual dysfunction and male infertility. Nature Reviews Urology. 2018;15(5):287-307. https://doi.org/10.1038/nrurol.2018.20

6. Moghbelinejad S., Mozdarani H., Ghoraeian P., et al. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: A review. International Journal of Reproductive BioMedicine. 2018;16(3):131.

7. Fafula R.V., Iefremova U.P., Onufrovych O.K., et al. Alterations in arginase-NO-synthase system of spermatozoa in human subjects with different fertility potential. Journal of medical biochemistry. 2018;37(2):134. doi: 10.1515/jomb-2017-0049

8. Murshidi M.M., Choy J.T., Eisenberg M.L. Male infertility and somatic health. Urologic Clinics. 2020;47(2):211-217. https://doi.org/10.1016/j.ucl.2019.12.008

9. Kamiński P., Baszyński J., Jerzak I., et al. External and genetic conditions determining male infertility. International Journal of Molecular Sciences. 2020;21(15):5274. https://doi.org/10.3390/ijms21155274

10. Liu J.L., Peña V, Fletcher S.A., et al. Genetic testing in male infertility-reassessing screening thresholds. Current opinion in urology. 2020;30(3):317-323. doi: 10.1097/MOU.0000000000000764

11. Pandruvada S., Royfman R., Shah T.A., et al. Lack of trusted diagnostic tools for undetermined male infertility. Journal of Assisted Reproduction and Genetics. 2021;(1-12). https://doi.org/10.1007/s10815-020-02037-5

12. Bisht S., Faiq M., Tolahunase M., et al. Oxidative stress and male infertility. Nature Reviews Urology. 2017;14(8):470-485. https://doi.org/10.1038/nrurol.2017.69

13. Khosrowbeygi A., Zarghami N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC clinical pathology. 2007;7(1):1-6. https://doi.org/10.1186/1472-6890-7-6

14. Huang Ch., Cao X., Pang D., et al. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget. 2018;9(36):24494. doi: 10.18632/oncotarget.25075

15. Prieto-Bermejo R., Romo-González M., Pérez-Fernández A., et al. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. Journal of Experimental & Clinical Cancer Research. 2018;37(1):1-18. https://doi.org/10.1186/s13046-018-0797-0

16. Agarwal A., Sengupta P. Oxidative stress and its association with male infertility. Male infertility. - Springer, Cham. 2020;(57-68). doi: 10.1007/978-3-030-32300-4_6

17. Di Meo S., Reed T.T., Venditti P., et al. Harmful and beneficial role of ROS Oxidative Medicine and Cellular Longevity. 2016;(1-3). doi: 10.1155/2016/7909186

18. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development. 2017;84(10):1039-1052. doi: 10.1002/mrd.22871

19. Subramanian V., Ravichandran A., Thiagarajan N., et al. Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clinical and Experimental Reproductive Medicine. 2018;45(2):88. doi: 10.5653/cerm.2018.45.2.88

20. Meseguer M., Martinez-Conejero A., Lourdes M., et al. The human sperm glutathione system: a key role in male fertility and successful cryopreservation. Drug metabolism letters. 2007;1(2):121-126. https://doi.org/10.2174/187231207780363633

21. Ammar O., Tekeya O., Hannachi I., et al. Increased sperm DNA fragmentation in infertile men with varicocele: relationship with apoptosis, seminal oxidative stress, and spermatic parameters. Reproductive Sciences. 2021;28(3):909-919. doi: 10.1007/s43032-020-00311-6

22. Carrell D.T., Aston K.I. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Systems biology in reproductive medicine. 2011;57(1-2):17-26. doi: 10.3109/19396368.2010.521615

23. Jalilvand A., Karimi N. Impact of polymorphism in DNA repair genes OGG1 and XRCC1 on seminal parameters and human male infertility. Andrologia. 2020;(13633-13633). doi: 10.1111/and.13633

24. Kruger T.F., Acosta A.A., Simmons K.F., et al. Predictive value of abnormal sperm morphology in in vitro fertilization. Fertility and sterility. 1988;49(1):112-117. https://doi.org/10.1016/S0015-0282(16)59660-5

25. Пономаренко И.В. Использование метода Multifactor Dimensionality Reduction (MDR) и его модификаций для анализа ген-генных и генно-средовых взаимодействий при генетико-эпидемиологических исследованиях (обзор). Научные результаты биомедицинских исследований. 2019;5(1). doi: 10.18413/2313- 8955-2019-5-1-0-1

26. Smith T.B., Dun M.D., Smith N.D., et al. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. Journal of cell science. 2013;126(6):1488-1497. doi: 10.1242/jcs.121657

27. Kiffmeyer W.R., Langer E., Davies S.M., et al. Genetic Polymorphisms in the Hmong Population. Cancer. 2004;100(2):411-417. doi: 10.1002/cncr.11913

28. Chen S.S.S., Chiu L.P. The hOGG1 Ser326Cys polymorphism and male subfertility in Taiwanese patients with varicocele. Andrologia. 2018;50(5):13007. doi: 10.1111/and.13007

29. Волков А.Н. Полиморфизм супероксиддисмутаз как генетически обусловленный фактор различной реакции клеток на окислительный стресс. В сб. Организм и среда жизни (к 206-летию со дня рождения Карла Францевича Рулье): сборник материалов III Международной научнопрактической конференции (г. Кемерово, 28 февраля 2020 г.)/ Отв. ред. Л.В. Начева. - Кемерово, 2020. - 132 с.

30. Проскурнина Е.В., Мельников Н.А., Долгих О.А. и др. Антиоксидантный потенциал семенной жидкости при нормозооспермии и патозооспермии. Андрология и генитальная хирургия. 2020;21(2):14-19. doi: 10.17650/2070-9781-2020-21-2-14-19

31. Garcia-Rodriguez A., de la Casa M., Gosálvez J., et al. CAT-262CT Genotype shows higher catalase activity in seminal plasma and lower risk of male infertility. Meta Gene. 2018;18:16-22. https://doi.org/10.1016/j.mgene.2018.07.011

32. Garcia-Rodriguez A., de la Casa M., Serrano M., et al. Impact of polymorphism in DNA repair genes OGG1 and XRCC1 on seminal parameters and human male infertility. Andrologia. 2018;50(10):13115. doi: 10.1111/and.13115

33. Behrouzi S., Mashayekhi F., Bahadori M.H. The association of PON1 192 Q/R polymorphism with the risk of idiopathic male infertility in northern Iran. Avicenna journal of medical biotechnology. 2018;10(4):253.

34. Fattahi A., Tavilani H., Esfahani M., et al. Genotype and phenotype frequencies of paraoxonase 1 in fertile and infertile men. Iranian Journal of Reproductive Medicine. 2015. doi: 10.3109/19396368. 2014.960624

35. Sabouhi S., Salehi Z., Bahadori M.H., et al. Human catalase gene polymorphism (CAT C-262 T) and risk of male infertility. Andrologia. 2015;47(1):97-101. doi: 10.1111/and.12228. Epub 2014 Jan 23

36. Song P., Zou S., Chen T., et al. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis. Biology of reproduction. 2015;92(2):1-9. doi: 10.1095/biolreprod.114.123240.

37. Myandina G.I., Kulchenko N.G., Alhejoj H. The frequency of polymorphism-262 C>T CAT gene of infertile men in the Moscow region. Медицинский вестник Северного Кавказа. 2019;14(3). https://doi.org/10.14300/mnnc.2019.14116

38. Xu P., Zhu Y., Liang X., et al. Genetic polymorphisms of superoxide dismutase 1 are associated with the serum lipid profiles of Han Chinese adults in a sexually dimorphic manner. PloS one. 2020;15(6):0234716. doi: 10.1371/journal.pone.0234716. eCollection 2020

39. Mousavi-Nasab F.S., Colagar A.H. Investigation of the association of endothelial nitric oxide synthase (eNOS)-T786C gene polymorphism with the risk of male infertility in an Iranian population. Environmental Science and Pollution Research. 2020;27(18):22434-22440. doi: 10.1007/s11356-020-08860-8

40. Krausz C., Riera-Escamilla A. Genetics of male infertility. Nature Reviews Urology. 2018;15(6):369-384. doi: 10.1038/s41585-018-0003-3

41. Wyck S., Herrera C., Requena C.E., et al. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics & chromatin. 2018;11(1):1-17. doi: 10.1186/s13072-018-0224-y.


Review

For citations:


Savikina K.G., Mashkina E.V., Aleksandrova A.A., Shkurat T.P., Lomteva S.V. Intergenic interactions and the contribution of polymorphic gene loci of enzymes involved in free radical processes in pathozoospermia. Medical Genetics. 2021;20(11):36-44. (In Russ.) https://doi.org/10.25557/2073-7998.2021.11.36-44

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)