Межгенные взаимодействия и вклад полиморфных локусов генов ферментов, принимающих участие в свободнорадикальных процессах при патозооспермии
https://doi.org/10.25557/2073-7998.2021.11.36-44
Аннотация
Об авторах
К. Г. СавикинаРоссия
Е. В. Машкина
Россия
А. А. Александрова
Россия
Т. П. Шкурат
Россия
С. В. Ломтева
Россия
Список литературы
1. Fainberg J., Kashanian J.A. Recent advances in understanding and managing male infertility. F1000Research. 2019;(8). doi: 10.12688/f1000research.17076.1
2. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cellular and Molecular Life Sciences 2020;77(1):93-113. https://doi.org/10.1007/s00018-019-03253-8
3. Choy J.T., Eisenberg M.L. Male infertility as a window to health. Fertility and sterility. 2018;110(5):810-814. https://doi.org/10.1016/j.fertnstert.2018.08.015
4. Hayden R.P., Flannigan R, Schlegel P.N. The role of lifestyle in male infertility: diet, physical activity, and body habitus. Current urology reports. 2018;19(7):1-10. https://doi.org/10.1007/s11934-018-0805-0
5. Lotti F., Maggi M. Sexual dysfunction and male infertility. Nature Reviews Urology. 2018;15(5):287-307. https://doi.org/10.1038/nrurol.2018.20
6. Moghbelinejad S., Mozdarani H., Ghoraeian P., et al. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: A review. International Journal of Reproductive BioMedicine. 2018;16(3):131.
7. Fafula R.V., Iefremova U.P., Onufrovych O.K., et al. Alterations in arginase-NO-synthase system of spermatozoa in human subjects with different fertility potential. Journal of medical biochemistry. 2018;37(2):134. doi: 10.1515/jomb-2017-0049
8. Murshidi M.M., Choy J.T., Eisenberg M.L. Male infertility and somatic health. Urologic Clinics. 2020;47(2):211-217. https://doi.org/10.1016/j.ucl.2019.12.008
9. Kamiński P., Baszyński J., Jerzak I., et al. External and genetic conditions determining male infertility. International Journal of Molecular Sciences. 2020;21(15):5274. https://doi.org/10.3390/ijms21155274
10. Liu J.L., Peña V, Fletcher S.A., et al. Genetic testing in male infertility-reassessing screening thresholds. Current opinion in urology. 2020;30(3):317-323. doi: 10.1097/MOU.0000000000000764
11. Pandruvada S., Royfman R., Shah T.A., et al. Lack of trusted diagnostic tools for undetermined male infertility. Journal of Assisted Reproduction and Genetics. 2021;(1-12). https://doi.org/10.1007/s10815-020-02037-5
12. Bisht S., Faiq M., Tolahunase M., et al. Oxidative stress and male infertility. Nature Reviews Urology. 2017;14(8):470-485. https://doi.org/10.1038/nrurol.2017.69
13. Khosrowbeygi A., Zarghami N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC clinical pathology. 2007;7(1):1-6. https://doi.org/10.1186/1472-6890-7-6
14. Huang Ch., Cao X., Pang D., et al. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget. 2018;9(36):24494. doi: 10.18632/oncotarget.25075
15. Prieto-Bermejo R., Romo-González M., Pérez-Fernández A., et al. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. Journal of Experimental & Clinical Cancer Research. 2018;37(1):1-18. https://doi.org/10.1186/s13046-018-0797-0
16. Agarwal A., Sengupta P. Oxidative stress and its association with male infertility. Male infertility. - Springer, Cham. 2020;(57-68). doi: 10.1007/978-3-030-32300-4_6
17. Di Meo S., Reed T.T., Venditti P., et al. Harmful and beneficial role of ROS Oxidative Medicine and Cellular Longevity. 2016;(1-3). doi: 10.1155/2016/7909186
18. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development. 2017;84(10):1039-1052. doi: 10.1002/mrd.22871
19. Subramanian V., Ravichandran A., Thiagarajan N., et al. Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clinical and Experimental Reproductive Medicine. 2018;45(2):88. doi: 10.5653/cerm.2018.45.2.88
20. Meseguer M., Martinez-Conejero A., Lourdes M., et al. The human sperm glutathione system: a key role in male fertility and successful cryopreservation. Drug metabolism letters. 2007;1(2):121-126. https://doi.org/10.2174/187231207780363633
21. Ammar O., Tekeya O., Hannachi I., et al. Increased sperm DNA fragmentation in infertile men with varicocele: relationship with apoptosis, seminal oxidative stress, and spermatic parameters. Reproductive Sciences. 2021;28(3):909-919. doi: 10.1007/s43032-020-00311-6
22. Carrell D.T., Aston K.I. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Systems biology in reproductive medicine. 2011;57(1-2):17-26. doi: 10.3109/19396368.2010.521615
23. Jalilvand A., Karimi N. Impact of polymorphism in DNA repair genes OGG1 and XRCC1 on seminal parameters and human male infertility. Andrologia. 2020;(13633-13633). doi: 10.1111/and.13633
24. Kruger T.F., Acosta A.A., Simmons K.F., et al. Predictive value of abnormal sperm morphology in in vitro fertilization. Fertility and sterility. 1988;49(1):112-117. https://doi.org/10.1016/S0015-0282(16)59660-5
25. Пономаренко И.В. Использование метода Multifactor Dimensionality Reduction (MDR) и его модификаций для анализа ген-генных и генно-средовых взаимодействий при генетико-эпидемиологических исследованиях (обзор). Научные результаты биомедицинских исследований. 2019;5(1). doi: 10.18413/2313- 8955-2019-5-1-0-1
26. Smith T.B., Dun M.D., Smith N.D., et al. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. Journal of cell science. 2013;126(6):1488-1497. doi: 10.1242/jcs.121657
27. Kiffmeyer W.R., Langer E., Davies S.M., et al. Genetic Polymorphisms in the Hmong Population. Cancer. 2004;100(2):411-417. doi: 10.1002/cncr.11913
28. Chen S.S.S., Chiu L.P. The hOGG1 Ser326Cys polymorphism and male subfertility in Taiwanese patients with varicocele. Andrologia. 2018;50(5):13007. doi: 10.1111/and.13007
29. Волков А.Н. Полиморфизм супероксиддисмутаз как генетически обусловленный фактор различной реакции клеток на окислительный стресс. В сб. Организм и среда жизни (к 206-летию со дня рождения Карла Францевича Рулье): сборник материалов III Международной научнопрактической конференции (г. Кемерово, 28 февраля 2020 г.)/ Отв. ред. Л.В. Начева. - Кемерово, 2020. - 132 с.
30. Проскурнина Е.В., Мельников Н.А., Долгих О.А. и др. Антиоксидантный потенциал семенной жидкости при нормозооспермии и патозооспермии. Андрология и генитальная хирургия. 2020;21(2):14-19. doi: 10.17650/2070-9781-2020-21-2-14-19
31. Garcia-Rodriguez A., de la Casa M., Gosálvez J., et al. CAT-262CT Genotype shows higher catalase activity in seminal plasma and lower risk of male infertility. Meta Gene. 2018;18:16-22. https://doi.org/10.1016/j.mgene.2018.07.011
32. Garcia-Rodriguez A., de la Casa M., Serrano M., et al. Impact of polymorphism in DNA repair genes OGG1 and XRCC1 on seminal parameters and human male infertility. Andrologia. 2018;50(10):13115. doi: 10.1111/and.13115
33. Behrouzi S., Mashayekhi F., Bahadori M.H. The association of PON1 192 Q/R polymorphism with the risk of idiopathic male infertility in northern Iran. Avicenna journal of medical biotechnology. 2018;10(4):253.
34. Fattahi A., Tavilani H., Esfahani M., et al. Genotype and phenotype frequencies of paraoxonase 1 in fertile and infertile men. Iranian Journal of Reproductive Medicine. 2015. doi: 10.3109/19396368. 2014.960624
35. Sabouhi S., Salehi Z., Bahadori M.H., et al. Human catalase gene polymorphism (CAT C-262 T) and risk of male infertility. Andrologia. 2015;47(1):97-101. doi: 10.1111/and.12228. Epub 2014 Jan 23
36. Song P., Zou S., Chen T., et al. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis. Biology of reproduction. 2015;92(2):1-9. doi: 10.1095/biolreprod.114.123240.
37. Myandina G.I., Kulchenko N.G., Alhejoj H. The frequency of polymorphism-262 C>T CAT gene of infertile men in the Moscow region. Медицинский вестник Северного Кавказа. 2019;14(3). https://doi.org/10.14300/mnnc.2019.14116
38. Xu P., Zhu Y., Liang X., et al. Genetic polymorphisms of superoxide dismutase 1 are associated with the serum lipid profiles of Han Chinese adults in a sexually dimorphic manner. PloS one. 2020;15(6):0234716. doi: 10.1371/journal.pone.0234716. eCollection 2020
39. Mousavi-Nasab F.S., Colagar A.H. Investigation of the association of endothelial nitric oxide synthase (eNOS)-T786C gene polymorphism with the risk of male infertility in an Iranian population. Environmental Science and Pollution Research. 2020;27(18):22434-22440. doi: 10.1007/s11356-020-08860-8
40. Krausz C., Riera-Escamilla A. Genetics of male infertility. Nature Reviews Urology. 2018;15(6):369-384. doi: 10.1038/s41585-018-0003-3
41. Wyck S., Herrera C., Requena C.E., et al. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics & chromatin. 2018;11(1):1-17. doi: 10.1186/s13072-018-0224-y.
Рецензия
Для цитирования:
Савикина К.Г., Машкина Е.В., Александрова А.А., Шкурат Т.П., Ломтева С.В. Межгенные взаимодействия и вклад полиморфных локусов генов ферментов, принимающих участие в свободнорадикальных процессах при патозооспермии. Медицинская генетика. 2021;20(11):36-44. https://doi.org/10.25557/2073-7998.2021.11.36-44
For citation:
Savikina K.G., Mashkina E.V., Aleksandrova A.A., Shkurat T.P., Lomteva S.V. Intergenic interactions and the contribution of polymorphic gene loci of enzymes involved in free radical processes in pathozoospermia. Medical Genetics. 2021;20(11):36-44. (In Russ.) https://doi.org/10.25557/2073-7998.2021.11.36-44