Preview

Medical Genetics

Advanced search

The effect of cfDNA on the expression of TLR receptors in human mesenchymal stem cells

https://doi.org/10.25557/2073-7998.2021.11.25-35

Abstract

Background. TLR-mediated activation of the innate immune response varies with cell type. TLRs can recognize not only exogenous pathogenic molecules (PAMP - pathogen-associated molecular patterns), but also endogenous molecules that appear during tissue damage, aseptic inflammation, and degeneration - DAMP. Under certain circumstances, this reaction may be uncontrollable, which leads to the development of severe systemic inflammation and sepsis. TLR9 is the only TLR that is capable of detecting pathogenic CpG DNA in endolysosomal structures. GC-rich rDNA fragments, which are TLR9 ligands, are accumulated in eDNA during pathology, pregnancy, or under the action of damaging factors. Aim: to investigate the influence of cfDNA fragments of different composition on the expression of TLR9 and on the expression of other human TLRs in in vitro cultures. Methods. The study was carried out on histologically different cultures with different proliferative potentials: mesenchymal stem cells (N = 13), HUVEC (N = 7), and MCF7 human breast adenocarcinoma cells. The expression of surface proteins by cells was studied by flow cytometry. To simulate the effect of eDNA on different types of cells, there were prepared model forms of DNA: genomic DNA (hydrolyzed by nuclease), oxidized forms of gDNA, and a model GC-enriched DNA fragment - CpG - a rich fragment of the transcribed region of rDNA. The expression level of TLR 1-10 genes was assessed by real-time PCR. Results. We noticed an increase in the expression of intracellular endoplasmic receptors TLR3, TLR7 and TLR8 genes in response to the action of both GC-rich and oxidized cfDNA fragments in different types of cells. In addition, the presence of cfDNA increases the expression of cell surface receptors TLR6 genes, and, to a lesser extent, TLR1 and TLR5. Under the action of oxidized fragments, the expression of the TLR4 gene increases. However, an increase in the expression of TLR family genes occurs secondarily after TLR9 activation. Blocking TLR9 inhibits signal transduction through other TLRs. Conclusions. Binding of An increase in the expression of receptors of the TLR family, except for TLR9, observed upon exposure to cfDNA, may be associated with the involvement of the TLR network in the regulation of signal transduction through TLR9, both through interactions between TLR receptors and through other signaling pathways associated with cfDNA recognition by DNA sensors.

Keywords


About the Authors

E. S. Ershova
Research Centre for Medical Genetics
Russian Federation


N. N. Veiko
Research Centre for Medical Genetics
Russian Federation


N. A. Salimova
Research Centre for Medical Genetics
Russian Federation


L. V. Kameneva
Research Centre for Medical Genetics
Russian Federation


O. A. Dolgih
Research Centre for Medical Genetics
Russian Federation


S. V. Kostyuk
Research Centre for Medical Genetics
Russian Federation


References

1. Galeazzi M., Morozzi G., Piccini J. et all. Dosage and characterization of circulating DNA: present usage and possible applications in systemic autoimmune disorders. Autoimmun Rev. 2003 Jan;2(1):50-5. doi: 10.1016/s1568-9972(02)00101-5

2. van der Vaart M., Pretorius P.J. Characterization of circulating DNA in healthy human plasma. Clin Chim Acta. 2008 Sep;395(1-2):186. doi: 10.1016/j.cca.2008.05.006.

3. Lu Y., Zhu X., Liang G.X., et all. Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids. 2012 Nov;43(5):2125-36. doi: 10.1007/s00726-012-1298-7. Epub 2012 Apr 25. PMID: 22532031.

4. Elshimali Y.I., Khaddour H., Sarkissyan M., et all. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013 Sep 13;14(9):18925-58. doi: 10.3390/ijms140918925

5. Forte V.A., Barrak D.K., Elhodaky M. et all. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med. 2016 Mar;13(1):19-40. doi: 10.28092/j.issn.2095-3941.2016.0007.

6. Tamminga S., van Maarle M., Henneman L., et all. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing. Adv Clin Chem. 2016;74:63-102. doi: 10.1016/bs.acc.2015.12.004.

7. Ermakov A.V., Konkova M.S., Kostyuk S.V., et all. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev. 2013;2013:649747. doi: 10.1155/2013/649747.

8. Glebova K., Veiko N., Kostyuk S., et all. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett. 2015 Jan 1;356(1):22-33. doi: 10.1016/j.canlet.2013.09.005.

9. Korzeneva I.B., Kostuyk S.V., Ershova L.S., et all. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation. Mutat Res. 2015 Sep;779:1-15. doi: 10.1016/j.mrfmmm.2015.05.004.

10. Kostyuk S.V., Tabakov V.J., Chestkov V.V., et all. Oxidized DNA induces an adaptive response in human fibroblasts. Mutat Res. 2013 Jul-Aug;747-748:6-18. doi: 10.1016/j.mrfmmm.2013.04.007.

11. Loseva P., Kostyuk S., Malinovskaya E., et all. Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S85-97. doi: 10.1517/14712598.2012.688948.

12. Pisetsky D.S. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol. 2012 Jul;144(1):32-40. doi: 10.1016/j.clim.2012.04.006.

13. Chiu Y.H., Macmillan J.B., Chen Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009 Aug 7;138(3):576-91. doi: 10.1016/j.cell.2009.06.015.

14. Li H., Wang J., Wang J., et all. Structural mechanism of DNA recognition by the p202 HINa domain: insights into the inhibition of Aim2-mediated inflammatory signalling. Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):21-9. doi: 10.1107/S2053230X1303135X.

15. Triantafilou K., Eryilmazlar D., Triantafilou M. Herpes simplex virus 2-induced activation in vaginal cells involves Toll-like receptors 2 and 9 and DNA sensors DAI and IFI16. Am J Obstet Gynecol. 2014 Feb;210(2):122.e1-122.e10. doi: 10.1016/j.ajog.2013.09.034.

16. Keating S.E., Baran M., Bowie A.G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 2011 Dec;32(12):574-81. doi: 10.1016/j.it.2011.08.004.

17. Goulopoulou S., Matsumoto T., Bomfim G.F., et all. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci (Lond). 2012 Oct;123(7):429-35. doi: 10.1042/CS20120130.

18. Kostjuk S., Loseva P., Chvartatskaya O., et all. Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S99-111. doi: 10.1517/14712598.2012.690028.

19. Ghosh S., Dass J.F.P. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene. 2016 Jun 10;584(1):97-109. doi: 10.1016/j.gene.2016.03.008.

20. Bliksøen M., Mariero L.H., Torp M.K., et all. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016 Jul;111(4):42. doi: 10.1007/s00395-016-0553-6.

21. Holm C.K., Paludan S.R., Fitzgerald K.A. DNA recognition in immunity and disease. Curr Opin Immunol. 2013 Feb;25(1):13-8. doi: 10.1016/j.coi.2012.12.006.

22. Takagi M. Toll-like receptor--a potent driving force behind rheumatoid arthritis. J Clin Exp Hematop. 2011;51(2):77-92. doi: 10.3960/jslrt.51.77.

23. Lee C.C., Avalos A.M., Ploegh H.L. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012 Feb 3;12(3):168-79. doi: 10.1038/nri3151.

24. Goulopoulou S., McCarthy C.G., Webb R.C. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev. 2016 Jan;68(1):142-67. doi: 10.1124/pr.114.010090.

25. Lazaridis A., Gavriilaki E., Douma S., Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci. 2021 Mar 26;22(7):3451. doi: 10.3390/ijms22073451.

26. Fitzgerald K.A., Kagan J.C. Toll-like receptors and the control of immunity. Cell (2020) 180(6):1044-66. 10.1016/j.cell.2020.02.041

27. Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res. 2021 May 29; 2021:9914854. doi: 10.1155/2021/9914854.

28. Miyake K., Shibata T., Ohto U., et all. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol. 2018 Mar 8; 30(2):43-51. doi: 10.1093/intimm/dxy016.

29. Jung J.Y., Kim J.W., Suh C.H., et all. Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. Front Immunol. 2020 Nov 5; 11:583513. doi: 10.3389/fimmu.2020.583513.

30. Костюк С.В., Малиновская Е.М., Ермаков А.В., Смирнова Т.Д., Каменева Л.В., Чвартацкая О.В., Лосева П.А., Ершова Е.С., Любченко Л.Н., Вейко Н.Н. Фрагменты внеклеточной ДНК усиливают транскрипционную активность генома мезенхимальных стволовых клеток человека, активируют TLR-зависимый сигнальный путь и ингибируют апоптоз. Биомедицинская химия. 2012; 58(6): 673-683.

31. Shintani Y., Kapoor A., Kaneko M., et all. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5109-14. doi: 10.1073/pnas.1219243110.

32. Harvey S.A., Dangi A., Tandon A., et all. The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation. PLoS One. 2013 Dec 9;8(12):e82159. doi: 10.1371/journal.pone.0082159

33. Mayer A.K., Muehmer M., Mages J., Gueinzius K., Hess C., Heeg K., Bals R., Lang R., Dalpke A.H. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol. 2007 Mar 1;178(5):3134-42. doi: 10.4049/jimmunol.178.5.3134.

34. Lebre M.C., van der Aar A.M., van Baarsen L., et all. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007 Feb;127(2):331-41. doi: 10.1038/sj.jid.5700530.

35. Lv F., Yu Y., Zhang B., et all. Inhibitory effects of mild hyperthermia plus docetaxel therapy on ER(+/-) breast cancer cells and action mechanisms. J Huazhong Univ Sci Technolog Med Sci. 2013 Dec;33(6):870-876. doi: 10.1007/s11596-013-1214-8.

36. Pevsner-Fischer M., Morad V., Cohen-Sfady M., et all. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007 Feb 15;109(4):1422-32. doi: 10.1182/blood-2006-06-028704.

37. Brencicova E., Diebold S.S. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013 Jul 30;3:37. doi: 10.3389/fcimb.2013.00037.

38. Swathi A., Dhinakar Raj G., Raja A., et all. Homology modeling and structural comparison of leucine rich repeats of Toll like receptors 1-10 of ruminants. J Mol Model. 2013 Sep;19(9):3863-74. doi: 10.1007/s00894-013-1871-3.

39. Wang J., Shao Y., Bennett T.A., et all. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem. 2006 Dec 8;281(49):37427-34. doi: 10.1074/jbc.M605311200.

40. Liu Q., Ding J.L. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol. 2016 Jul;94(6):538-42. doi: 10.1038/icb.2016.18. Epub 2016 Feb 10.

41. Köberlin M.S., Heinz L.X., Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol. 2016 Apr;39:28-36. doi: 10.1016/j.ceb.2016.01.010.

42. Mohan S., Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother. 2018 Dec;108:1866-1878. doi: 10.1016/j.biopha. 2018.10.019.

43. Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011 May 27;34(5):637-50. doi: 10.1016/j.immuni.2011.05.006.

44. Liu Q., Zhu Y., Yong W.K., Sze N.S., Tan N.S., Ding J.L. Cutting edge: synchronization of IRF1, JunB, and C/EBPbeta activities during TLR3-TLR7 cross-talk orchestrates timely cytokine synergy in the proinflammatory response. J Immunol 2015; 195: 801-805.


Review

For citations:


Ershova E.S., Veiko N.N., Salimova N.A., Kameneva L.V., Dolgih O.A., Kostyuk S.V. The effect of cfDNA on the expression of TLR receptors in human mesenchymal stem cells. Medical Genetics. 2021;20(11):25-35. (In Russ.) https://doi.org/10.25557/2073-7998.2021.11.25-35

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)