Preview

Medical Genetics

Advanced search

NCF4 gene polymorphism, level of glutathione and glycated hemoglobin in type 2 diabetics with coronary artery disease

https://doi.org/10.25557/2073-7998.2021.08.37-47

Abstract

A common pathogenic link in type 2 diabetes mellitus (T2D) and coronary artery disease (CAD) is oxidative stress, which develops as a result of an imbalance in the production of reactive oxygen species (ROS) and their neutralization by the antioxidant defense system. Neutrophilic cytosolic factor 4 (NCF4) is directly involved in the synthesis of superoxide anion as part of NADPH oxidase. In this regard, the purpose of this study was to investigate the associations of eight single nucleotide polymorphisms of the NCF4 gene rs5995355 (A>G), rs5995357 (T>A), rs1883112 (G>A), rs4821544 (G>A), rs760519 (T>C), rs729749 (C>T), rs2075938 (G>A), rs2075939 (C>T) with a predisposition to T2D, as well as the risk of developing CAD in patients with T2D. The study included 1579 patients with T2D (448 of them were also diagnosed with CAD) and 1627 relatively healthy volunteers. Genotyping was performed using MALDI-TOF mass spectrometry on the MassArray Analyzer 4 platform. Statistical processing of the obtained data was carried out using the SNPStats online program. The allele and genotype frequencies of the studied SNPs in T2D patients did not differ from those in the control group (p>0.05). Associations of genotypes rs4821544-C/C (OR 1.71, 95CI 1.12-2.59, p=0.013) and rs5995357-A/A (OR 3.74, 95CI 1.14-12.31, p=0.026) with a predisposition to CAD in diabetic females were established. Despite the absence of associations of the studied SNPs NCF4 with CAD in males, associations of the haplotype structure of NCF4 (p=0.0064), as well as the haplotypes H2 (OR 1.79, 95CI 1.16-2.76, p=0.0085) and H3 (OR 1.77, 95CI 1.06-2.97, p=0.03) with an increased risk of CAD were observed exclusively in diabetic males. In addition, a sex-independent relationship of the rs4821544-C/C genotype with an increased level of glycated hemoglobin (p=0.032) and oxidized glutathione (p=0.049) was revealed in patients with CAD and T2D. In the same category of patients haplotypes H4 rs5995355G-rs5995357A-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075938G-rs2075939C and H10 rs5995355A-rs5995357T-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075938A-rs2075939C of NCF4 gene were associated with an increase in the content of HbA1c 8.67 % (p=0.011) and 6.27% (p=0.038), respectively. The data obtained indicate a significant contribution of the NCF4 gene polymorphism to the pathogenesis of CAD in patients with T2D and create a scientific basis for the development of targeted therapy and prevention of this pathology.

About the Author

Iu. E. Azarova
Kursk State Medical University
Russian Federation


References

1. Дедов И.И., Шестакова М.В., Майоров А.Ю., Шамхалова М.Ш., Сухарева О.Ю., Галстян Г.Р. и др. Сахарный диабет 2 типа у взрослых. Сахарный диабет 2020; 23(2S): 4-102. doi.org/10.14341/DM12507.

2. Volpe C.M.O., Villar-Delfino P.H., Dos Anjos P.M.F., Nogueira-Machado J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell death and disease 2018; 9(2): 1-9. doi.org/10.1038/s41419-017-0135-z.

3. Urner S., Ho F., Jha J.C., Ziegler D., Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxidants and redox signaling 2020; 33(6): 415-434. doi.org/10.1089/ars.2020.8047.

4. Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol 2018; 19: 31-44. doi.org/10.1038/nrm.2017.89.

5. Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018; 98: 2133-2223. doi.org/10.1152/physrev.00063.2017.

6. Onyango A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell Longev. 2018; 4321714. doi.org/10.1155/2018/4321714.

7. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21: 363-383. doi.org/10.1038/s41580-020-0230-3.

8. Bushueva O.Y. Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia. Kardiologiia 2020; 60(10): 1229-1229. doi.org/10.18087/cardio.2020.10.n1229.

9. Бушуева О.Ю., Долженкова Е.М., Барышев А.С., Иванова Н.В., Рыжаева В.Н., Разинькова Н.С. и др. Исследование взаимосвязи полиморфизма C667T гена MTHFR c риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2015; 4: 76-80.

10. Долженкова Е.М., Барышев А.С., Иванова Н.В., Бушуева О.Ю., Иванов В.П., Полоников А.В. Исследование взаимосвязи полиморфизмов-1612 5A/6A гена MMP3 и 2003G> A гена MMP9 c риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2016; (3): 63-66. doi.org/10.21626/vestnik/2016-3/10.

11. Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2): e88-e91.

12. Дедов И.И., Шестакова М.В., Майоров А.Ю., Викулова О.К., Галстян Г.Р., Кураева Т.Л. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет 2019; 22(1S1): 1-144. doi.org/10.14341/DM221S1.

13. Shen E., Li Y., Li Y., Shan L., Zhu H., Feng Q. et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 2009; 58(10): 2386-2395. doi.org/10.2337/db08-0617.

14. Roe N.D., Thomas D.P., Ren J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes, Obesity and Metabolism 2011; 13(5): 465-473. doi.org/10.1111/j.1463-1326.2011.01369.x.

15. Gray S.P., Di Marco E., Okabe J., Szyndralewiez C., Heitz F., Montezano A.C. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013; 127(18): 1888-1902. doi.org/10.1161/CIRCULATIONAHA.112.132159.

16. Schiattarella G.G., Carrizzo A., Ilardi F., Damato A., Ambrosio M., Madonna M. et al. Rac1 modulates endothelial function and platelet aggregation in diabetes mellitus. Journal of the American Heart Association 2018; 7(8): e007322. doi.org/10.1161/JAHA.117.007322.

17. Aggarwal H., Kanuri B.N., Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. Oxidative Stress in Heart Diseases Springer, Singapore 2019; P. 461-482. doi.org/10.1007/978-981-13-8273-4_21.

18. Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018; 122: 877-902. doi.org/10.1161/CIRCRESAHA.117.311401.

19. Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y. et al. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE 2010; 5: e15726. doi.org/10.1371/journal.pone.0015726.

20. Ma Y., Li W., Yin Y., Li W. AST IV inhibits H(2)O(2)-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-beta1/Smad2 pathway. Int. J. Mol. Med 2015; 35: 1667-1674. doi.org/10.3892/ijmm.2015.2188.

21. Xing Y., Lin Q., Tong Y., Zhou W., Huang J., Wang Y. et al. Abnormal neutrophil transcriptional signature may predict newly diagnosed latent autoimmune diabetes in adults of South China. Frontiers in endocrinology 2020; 11: 581902. doi.org/10.3389/fendo.2020.581902.

22. Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., Сакали С.Ю., Коломоец И.И., Азарова В.А. и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа. Медицинская генетика 2019; 18(8): 37-48. doi.org/10.25557/2073-7998.2019.08.37-48.

23. Воробьева Н.В. NADPH-оксидаза нейтрофилов и заболевания, связанные с ее дисфункцией. Иммунология 2013; 34(4): 227-232.

24. Alfar E.A., Kirova D., Konantz J., Birke S., Mansfeld J., Ninov N. Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Scientific reports 2017; 7(1): 1-12. doi.org/10.1038/s41598-017-03873-9.

25. Matute J.D., Arias A.A., Wright N.A., Wrobel I., Waterhouse C.C., Li X.J. et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood, The Journal of the American Society of Hematology 2009; 114(15): 3309-3315. doi.org/10.1182/blood-2009-07-231498.

26. Olsson L.M., Lindqvist A.K., Källberg H., Padyukov L., Burkhardt H., Alfredsson L. et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis research and therapy 2007; 9(5): 1-11. doi.org/10.1186/ar2299.

27. Roberts R.L., Hollis-Moffatt J.E., Gearry R.B., Kennedy M.A., Barclay M.L., Merriman T.R. Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes and Immunity 2008; 9(6): 561-565. doi.org/10.1038/gene.2008.49.

28. Ryan B.M., Zanetti K.A., Robles A.I., Schetter A.J., Goodman J., Hayes R.B. et al. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer. International journal of cancer 2014; 134(6): 1399-1407. doi.org/10.1002/ijc.28457.

29. Gándara-Mireles J.A., Lares-Asseff I., Espinoza E.A.R., Blanco J.G., Font A.E.G., Hurtado L.P.C. et al. Association of genetic polymorphisms NCF4 rs1883112, CBR3 rs1056892, and ABCC1 rs3743527 with the cardiotoxic effects of doxorubicin in children with acute lymphoblastic leukemia. Pharmacogenetics and Genomics 2021; 31(5): 108-115. doi.org/10.1097/FPC.0000000000000428.

30. Медведева М.В. Ассоциации полиморфных вариантов rs2305948 и rs1870377 гена рецептора фактора роста сосудистого эндотелия 2 типа (KDR) с риском развития ишемической болезни сердца. Научные результаты биомедицинских исследований 2021; 7(1): 32-43. doi.org/10.18413/2658-6533-2020-7-1-0-3.

31. Meng H., Ruan J., Tian X., Li L., Chen W., Meng F. High retinoic acid receptor-related orphan receptor A gene expression in peripheral blood leukocytes may be related to acute myocardial infarction. Journal of International Medical Research 2021; 49(6): 1-13. doi.org/10.1177/03000605211019663.

32. Liu Y., Chen H., Mu D., Li D., Zhong Y., Jiang N. et al. Association of serum retinoic acid with risk of mortality in patients with coronary artery disease. Circulation research 2016; 119(4): 557-563. doi.org/10.1161/CIRCRESAHA.116.308781.


Review

For citations:


Azarova I.E. NCF4 gene polymorphism, level of glutathione and glycated hemoglobin in type 2 diabetics with coronary artery disease. Medical Genetics. 2021;20(8):37-47. (In Russ.) https://doi.org/10.25557/2073-7998.2021.08.37-47

Views: 465


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)