Полиморфизм локуса SLC7A11-PCDH18 может быть новым генетическим фактором риска для ювенильного идиопатического артрита
https://doi.org/10.25557/2073-7998.2021.08.31-36
Аннотация
Об авторах
И. Ю. БакутенкоРоссия
И. Д. Гаврильчик
Россия
Е. В. Сечко
Россия
И. А. Козыро
Россия
А. М. Чичко
Россия
Г. М. Батян
Россия
А. В. Сукало
Россия
Н. И. Рябоконь
Россия
Список литературы
1. Wang L., Wang F.-S., Gershwin M.E. Human autoimmune diseases: a comprehensive update. J Intern Med 2015;278:369-95. doi: 10.1111/joim.12395.
2. Richard-Miceli C., Criswell L.A. Emerging patterns of genetic overlap across autoimmune disorders. Genome Med 2012;4:6. doi: 10.1186/gm305.
3. Tsai F.-J., Lee Y.-C., Chang J.-S., Huang L.-M., Huang F.-Y., Chiu N.-C., et al. Identification of novel susceptibility loci for Kawasaki disease in a Han Chinese population by a genome-wide association study. PLoS ONE 2011;6:e16853. doi: 10.1371/journal.pone.0016853.
4. Aringer M., Costenbader K., Daikh D., Brinks R., Mosca M., Ramsey-Goldman R., et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 2019;78:1151-9. doi: 10.1136/annrheumdis-2018-214819.
5. Petty R.E., Southwood T.R., Manners P., Baum J., Glass D.N., Goldenberg J., et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004;31:390-2.
6. McCrindle B.W., Rowley A.H., Newburger J.W., Burns J.C., Bolger A.F. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:927-99. doi: 10.1161/CIR.0000000000000484.
7. Sherry S.T. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 2001;29:308-11. doi: 10.1093/nar/29.1.308.
8. Luo Y., Wang C., Yong P., Ye P., Liu Z., Fu Z., et al. Decreased expression of the long non-coding RNA SLC7A11-AS1 predicts poor prognosis and promotes tumor growth in gastric cancer. Oncotarget 2017;8:112530-49. doi: 10.18632/oncotarget.22486.
9. Song W., Li D., Tao L., Luo Q., Chen L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharmaceutica Sinica B 2020;10:61-78. doi: 10.1016/j.apsb.2019.12.006.
10. Muri J., Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol 2021;21:363-81. doi: 10.1038/s41577-020-00478-8.
11. Long Y., Tao H., Karachi A., Grippin A.J., Jin L., Chang Y., et al. Dysregulation of glutamate transport enhances Treg function that promotes VEGF blockade resistance in glioblastoma. Cancer Res 2020;80:499-509. doi: 10.1158/0008-5472.CAN-19-1577.
12. Kondělková K., Vokurková D., Krejsek J., Borská L., Fiala Z., Andrýs C. Regulatory T cells (Treg) and their roles in immune system with respect to immunopathological disorders. Acta Med (Hradec Kralove, Czech Repub) 2010;53:73-7. doi: 10.14712/18059694. 2016.63.
13. Procaccini C., Garavelli S., Carbone F., Di Silvestre D., La Rocca C., Greco D., et al. Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021:S107476132100176X. doi: 10.1016/j.immuni.2021.04.014.
14. Hoeppli R.E., Pesenacker A.M. Targeting Tregs in juvenile idiopathic arthritis and juvenile dermatomyositis-insights from other diseases. Front Immunol 2019;10:46. doi: 10.3389/fimmu.2019.00046.
15. Dai Z., Turtle C.J., Booth G.C., Riddell S.R., Gooley T.A., Stevens A.M., et al. Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. Journal of Experimental Medicine 2009;206:793-805. doi: 10.1084/jem.20081648.
16. Mizui M., Tsokos G.C. Targeting regulatory T cells to treat patients with systemic lupus erythematosus. Front Immunol 2018;9:786. doi: 10.3389/fimmu.2018.00786.
Рецензия
Для цитирования:
Бакутенко И.Ю., Гаврильчик И.Д., Сечко Е.В., Козыро И.А., Чичко А.М., Батян Г.М., Сукало А.В., Рябоконь Н.И. Полиморфизм локуса SLC7A11-PCDH18 может быть новым генетическим фактором риска для ювенильного идиопатического артрита. Медицинская генетика. 2021;20(8):31-36. https://doi.org/10.25557/2073-7998.2021.08.31-36
For citation:
Bakutenko I.Y., Haurylchyk I.D., Sechko E.V., Kozyro I.A., Tchitchko A.M., Batyan G.M., Sukalo A.V., Ryabokon N.I. Polymorphism of the SLC7A11-PCDH18 locus may be a novel genetic risk factor for juvenile idiopathic arthritis. Medical Genetics. 2021;20(8):31-36. (In Russ.) https://doi.org/10.25557/2073-7998.2021.08.31-36