Preview

Medical Genetics

Advanced search

Genetic forms of developmental delay and intellectual disability in the practice of the medical genetic consultation of Research Centre for Medical Genetics

https://doi.org/10.25557/2073-7998.2021.07.45-58

Abstract

Developmental delay (DD) and intellectual disability (ID) are frequent reasons for referring patients for medical genetic counseling. A significant increase in the number of nosological forms of monogenic and chromosomal diseases among patients with DD or ID in medical genetic consultation of Bochkov Research Centre for Medical Genetics in recent years reflects an increase in its effectiveness in diagnosing this pathology. Purpose of the research: 1. To estimate the proportion of clinically and/or laboratory-confirmed chromosomal, monogenic, and genomic imprinting disorders diagnosed in patients with DD or ID consulted by geneticists from the consultation and scientific consulting departments of the Bochkov Research Centre for Medical Genetics in 2006, 2007, 2016, and the first half of 2017. 2. Determination of the effectiveness of different diagnostic methods of genetic forms DD and ID. 3. Calculation of segregation frequency to estimate the contribution of monogenic forms with autosomal recessive and X-linked recessive types of inheritance among undifferentiated cases of DD and ID. The sampling for the analysis included 2350 patients with DD or ID of varying severity, as well as patients with a diagnosis suggesting the development of DD or ID as they mature, consulted by geneticists from the consultation and scientific consulting departments of the Bochkov Research Centre for Medical Genetics in 2006, 2007, 2016, and the first half of 2017. During the research period (2006, 2007, 2016, and the first half of 2017), there was a decreasing trend in the proportion of chromosomal pathology among all patients of the sampling. Within the group of patients with DD or ID with chromosomal pathology, a significant increase in the proportion of structural chromosomal pathology and a decrease in the proportion of diseases caused by changes in the number of chromosomes is noted over time. The proportion of monogenic forms remains practically unchanged during the study period. Within this group, there is some increase in the share of AD pathology. The proportion of patients with DD or ID caused by genomic imprinting disorders varies significantly in the years studied, with a tendency to decrease over time. The proportion of only clinically identified syndromes without laboratory confirmation decreases significantly during the study period. The maximum diagnostic efficiency among laboratory genetic methods has been shown for microsatellite analysis, MLPA, chromosomal microarray analysis (CMA) and next generation sequencing (NGS).

About the Author

I. V. Anisimova
Research Centre for Medical Genetics
Russian Federation


References

1. Hu H., Kahrizi K., Musante L. et al. Genetics of intellectual disability in consanguineous families. Mol Psychiatry. 2019; 24 (7): 1027-1039. DOI: 10.1038/s41380-017-0012-2.

2. Hudgins L., Toriello H. V., Enns G.M. et al. Signs and symptoms of genetic conditions: a handbook. Oxford University Press. 2014. - 540 p.

3. Harripaul R., Vasli N., Mikhailov A. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry. 2018; 23(4): 973-984. DOI: 10.1038/mp.2017.60.

4. Boycott K.M., Rath A., Chong J.X. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100(5):695-705. DOI: 10.1016/j.ajhg.2017.04.003.

5. Chiurazzi P., Kiani A.K., Miertus J. et al. Genetic analysis of intellectual disability and autism. Acta Biomed. 2020; 91(13-S): e2020003. DOI: 10.23750/abm.v91i13-S.10684.

6. Puri R.D., Tuteja M., Verma I.C. Genetic approach to diagnosis of intellectual disability [published correction appears in Indian J Pediatr. 2017; 84(3): 256]. Indian J Pediatr. 2016; 83(10): 1141-1149.- DOI: 10.1007/s12098-016-2205-0.

7. Heuvelman H., Abel K., Wicks S. et al. Gestational age at birth and risk of intellectual disability without a common genetic cause. Eur J Epidemiol. 2018; 33(7): 667-678. DOI: 10.1007/s10654-017-0340-1.

8. Бочков Н.П., Гинтер Е.К., Пузырев В.П. Наследственные болезни: национальное руководство. Изд-во: ГЭОТАР-Медиа, 2012. - 936 с.

9. Vissers L.E.L.M., Gilissen C., Veltman J.A. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016; 17(1): 9-18. DOI: 10.1038/nrg3999.

10. Bass N., Skuse D. Genetic testing in children and adolescents with intellectual disability. Curr Opin Psychiatry. 2018; 31(6): 490-495. DOI: 10.1097/YCO.0000000000000456.

11. Hu T., Zhang Z., Wang J. et al. Chromosomal aberrations in pediatric patients with developmental delay/intellectual disability: a single-center clinical investigation. Biomed Res Int. 2019: 9352581. DOI: 10.1155/2019/9352581.

12. Ilyas M., Mir A., Efthymiou S. et al. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 2020; (9): 22. DOI: 10.12688/f1000research.16315.1.

13. Yokoi T., Enomoto Y., Tsurusaki Y. et al. An efficient genetic test flow for multiple congenital anomalies and intellectual disability. Pediatr Int. 2020;62(5): 556-561. DOI: 10.1111/ped.14159.

14. Anazi S., Maddirevula S., Salpietro V. et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017; 136(11-12): 1419-1429. DOI: 10.1007/s00439-017-1843-2.

15. Gilissen C., Hehir-Kwa J.Y., Thung D.T. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014. - 511(7509): 344-347. - DOI: 10.1038/nature13394.

16. Harripaul R., Noor A., Ayub M. et al. The use of next-generation sequencing for research and diagnostics for intellectual disability. Cold Spring Harb Perspect Med. 2017; 7(3): a026864. DOI: 10.1101/cshperspect.a026864.

17. Jamra R. Genetics of autosomal recessive intellectual disability. Med Genet. 2018; 30(3): 323-327. DOI: 10.1007/s11825-018-0209-z.

18. Vallance H., Sinclair G., Rakic B. et al. Diagnostic yield from routine metabolic screening tests in evaluation of global developmental delay and intellectual disability. J. Paediatr. Child Health. 2020; pxaa112. DOI: org/10.1093/pch/pxaa112.

19. Rauch A., Hoyer J., Guth S. et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet Part A 2006; 140: 2063-2074. DOI: 10.1002/ajmg.a.31416.

20. Musante L., Ropers H.H. Genetics of recessive cognitive disorders. Trends Genet 2014; 30: 32-39. DOI: 10.1016/j.tig.2013.09.008.

21. Harripaul R., Vasli N., Mikhailov A. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry. 2018; 23(4): 973-984.

22. Anazi S., Maddirevula S., Faqeih E. et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017; 22(4): 615-624. DOI: 10.1038/mp.2016.113.

23. Monies D., Abouelhoda M., AlSayed M. et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017; 136(8): 921-939. DOI: 10.1007/s00439-017-1821-8.

24. Hamdan F.F., Srour M., Capo-Chichi J.M. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014; 10(10): e1004772. DOI: 10.1371/journal.pgen.1004772.

25. Fitzgerald T.W., Gerety S.S., Jones W.D. et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015; (519): 223-228. DOI: 10.1038/nature14135.

26. Воинова В. Ю., Ворсанова С. Г., Юров Ю. Б. и соавт. Алгоритм диагностики X-сцепленных форм умственной отсталости у детей. Рос вестн перинатол и педиатр 2016; 61(5): 34-41. DOI: 10.21508/1027-4065-2016-61-5-34-41.

27. Peng J.P., Liu F., Xie H. et al. The pathogenicity of genomic/genetic variant of X-chromosomal genes in males with intellectual disability. Yi Chuan. 2017; 39(6): 455-468. DOI: 10.16288/j.yczz.16-407.

28. De Luca C., Race V., Keldermans L. et al. Challenges in molecular diagnosis of X-linked intellectual disability. Br Med Bull. 2020; 133(1): 36-48. DOI: 10.1093/bmb/ldz039.

29. Iourov I.Y., Vorsanova S.G., Korostelev S.A. et al. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet. 2015; (8): 77. DOI: 10.1186/s13039-015-0182-z.

30. Cavalli-Sforza L.L., Bodmer W.L. The genetics of human populations. Freeman W.H. San Francisco. 1971 - 860 p.

31. Фогель Ф., Мотульски А. Генетика человека: в 3-х т. Том 3. Москва: Мир. 1990 - 366 с.

32. Анисимова И.В. Анализ структуры задержки психического развития и умственной отсталости среди пациентов Медико-генетического научного центра. Медицинская генетика. 2021; 20(5): 15-25. DOI: 10.25557/2073-7998.2021.05.15-25.

33. Tzschach A., Ropers H.H. Genetics of mental retardation. Dtsch Arztebl 2007; 104(20): A1400-1405.

34. Michelson D.J., Shevell M.I., Sherr E.H. et al. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011; (77): 1629-1635. DOI: 10.1212/WNL.0b013e3182345896.

35. Karaman B., Kayserili H., Ghanbari A. et al. Pallister-Killian syndrome: clinical, cytogenetic and molecular findings in 15 cases. Mol Cytogenet. 2018; (11): 45. DOI: 10.1186/s13039-018-0395-z.

36. Анисимова И.В. Генетика умственной отсталости. Медицинская генетика 2021; 20(2): 3-20. DOI: 10.25557/2073-7998.2021. 02.3-20.

37. Шилова Н.В., Миньженкова М.Е. Интерпретация клинически значимых вариаций числа копий ДНК. Медицинская генетика 2018; 17(10): 15-19. DOI: 10.25557/2073-7998.2018. 10.15-19.

38. Lay-Son G., Espinoza K., Vial C. et al. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J. Pediatr (Rio J). 2015; (91): 189-195. DOI: 10.1016/j.jped.2014.07.003.

39. Ho K.S., Wassman E.R., Baxter A.L. et al. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders using an ultra-high resolution chromosomal microarray optimized for neurodevelopmental disorders. Int J Mol Sci. 2016; 17(12): 2070. DOI: 10.3390/ijms17122070.

40. Fan Y., Wu Y., Wang L. et al. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions. BMC Medical Genomics. 2018; (11): 49. DOI: 10.1186/s12920-018-0368-4.

41. de Souza L.C., Dos Santos A.P., Sgardioli I.C. et al. Phenotype comparison among individuals with developmental delay/intellectual disability with or without genomic imbalances. J Intellect Disabil Res. 2019; 63(11): 1379-1389. DOI: 10.1111/jir.12615.

42. Sbruzzi I.C., Pereira A.C., Vasconcelos B. et al. Williams-Beuren syndrome: diagnosis by polymorphic markers. Genet Test Mol Biomarkers. 2010; 14(2): 209-214. DOI: 10.1089/gtmb.2009.0120.

43. Dutra R.L., Pieri Pde C., Teixeira A.C. et al. Detection of deletions at 7q11.23 in Williams-Beuren syndrome by polymorphic markers. Clinics (Sao Paulo). 2011; 66(6): 959-64. DOI: 10.1590/s1807-59322011000600007.

44. Seo G.H., Kim J.H., Cho J.H. et al. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay. Korean J Pediatr. 2016; 59(1): 16-23. DOI: 10.3345/kjp.2016.59.1.16.

45. Schuurs-Hoeijmakers J.H., Vulto-van Silfhout A.T., Vissers L.E. et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet. 2013; 50(12): 802-811. DOI: 10.1136/jmedgenet-2013- 101644.

46. Kvarnung M., Nordgren A. Intellectual disability & rare disorders: a diagnostic challenge. Adv Exp Med Biol. 2017; (1031): 39-54. DOI: 10.1007/978-3-319-67144-4_3.

47. Wieczorek D. Autosomal dominant intellectual disability. Med Genet. 2018; 30(3): 318-322. DOI: 10.1007/s11825-018-0206-2.

48. Mir Y.R., Kuchay R.A.H. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet. 2019; 56(9): 567-573. DOI: 10.1136/jmedgenet-2018-105821.

49. Monk D., Mackay D. J. G., Eggermann T. et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019; 20(4): 235-248. DOI: 10.1038/s41576-018-0092-0.

50. Õunap K. Silver-Russell syndrome and Beckwith-Wiedemann syndrome: opposite phenotypes with heterogeneous molecular etiology. Mol Syndromol. 2016; 7(3): 110-121. DOI: 10.1159/000447413.

51. Семенова Н.А., Анисимова И.В., Володин И. В. и соавт. Делеция импринтированного региона 14q32.2 у пациента с синдром Кагами-Огата. Медицинская генетика, 2018; 17(11): 43-47. DOI: 10.25557/2073-7998.2018.11.43-47.

52. Wang T.S., Tsai W.H., Tsai L.P. et al. Clinical characteristics and epilepsy in genomic imprinting disorders: Angelman syndrome and Prader-Willi syndrome. Ci Ji Yi Xue Za Zhi. 2019; 32(2): 137-144. DOI: 10.4103/tcmj.tcmj_103_19.

53. Spiteri B.S., Stafrace Y., Calleja-Agius J. Silver-Russell syndrome: a review. Neonatal Netw. 2017; 36(4): 206-212. DOI: 10.1891/0730-0832.36.4.206.


Review

For citations:


Anisimova I.V. Genetic forms of developmental delay and intellectual disability in the practice of the medical genetic consultation of Research Centre for Medical Genetics. Medical Genetics. 2021;20(7):45-58. (In Russ.) https://doi.org/10.25557/2073-7998.2021.07.45-58

Views: 1968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)