Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Использование CRISPR/Cas9 для нокаута аллелей гена DES, несущих гетерозиготные gain-of-function мутации, связанные с развитием десминопатии

https://doi.org/10.25557/2073-7998.2021.07.37-44

Полный текст:

Аннотация

Наследственные кардиомиопатии характеризуются неблагоприятным прогнозом и низкой пятилетней выживаемостью пациентов с выраженной клиникой. При этом лечение, за исключением хирургического, в основном паллиативное, во многих случаях лишь трансплантация сердца может улучшить состояние пациента и прогноз. Часть наследственных кардиомиопатий ассоциирована с аутосомно-доминантными мутациями в гене DES, кодирующем белок промежуточных филаментов десмин, дефекты в котором ведут к развитию десминопатий с вовлечением наиболее активно работающих мышц - скелетных, миокарда, мышц дыхательной системы. Новые терапевтические подходы, основанные на методах геномного редактирования, могут позволить устранить каузативный генетический дефект. Так как имеются данные об отсутствии клинических симптомов у людей с гетерозиготными нонсенс мутациями в гене DES, по-видимому, имеется возможность снизить тяжесть протекания десминопатий путем нокаута мутантного аллеля в случае гетерозиготной мутации. Целью работы являлась проверка возможности специфического нокаута аллелей гена DES, несущих гетерозиготные мутации, ассоциированные с десминопатиями, методами геномного редактирования. Нами был получен генетический материал трех пациентов с десминопатиями, связанными с мутациями в гене DES (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Направляющие РНК, совместимые с нуклеазами SaCas9 и eSpCas9(1.1), были подобраны, используя онлайн сервис Benchling, и клонированы в плазмиды, несущие соответствующие эндонуклеазы Cas9. Редактирующие плазмиды котрансфицировали в клетки HEK293T вместе с «таргетными» плазмидами, содержащими участки гена DES с мутациями. Анализ характерных для негомологичного соединения концов инделов в выделенной из клеток спустя 48 часов после трансфекции тотальной ДНК проводился посредством TIDE-анализа полученных сиквенсов целевых участков, либо методом Т7Е1 анализа. Наибольшая средняя эффективность 2,22% (до 8,06%) показана при использовании sgRNA на мутацию c.330_338del в комбинации с eSpCas9(1.1). Эффективность других комбинаций направляющих РНК и Cas9 не превышала 3%. Достигнутая эффективность нокаута очевидно недостаточна для коррекции десминопатии на уровне организма. Необходимость специфического нокаутирования мутантных аллелей не позволяет использовать другие направляющие РНК для CRISPR/Cas9, поэтому необходимо совершенствование разработанных систем для повышения их эффективности либо использование новых, более эффективных, направляемых нуклеаз.

Об авторах

К. С. Кочергин-Никитский
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


А. В. Лавров
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Е. В. Заклязьминская
ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»
Россия


С. А. Смирнихина
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Список литературы

1. McKenna W.J., Maron B.J., Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circulation Research 2017;121:722-30. https://doi.org/10.1161/CIRCRESAHA.117.309711.

2. Elliott P., Andersson B., Arbustini E., et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases. European Heart Journal 2008;29:270-6. https://doi.org/10.1093/eurheartj/ehm342.

3. Westphal J.G., Rigopoulos A.G., Bakogiannis C., et al. The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Failure Reviews 2017;22:743-52. https://doi.org/10.1007/s10741-017-9641-4.

4. Paulin D., Li Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Experimental Cell Research 2004;301:1-7. https://doi.org/10.1016/j.yexcr.2004.08.004.

5. Goldfarb L.G., Dalakas M.C. Tragedy in a heartbeat: Malfunctioning desmin causes skeletal and cardiac muscle disease. Journal of Clinical Investigation 2009;119:1806-13. https://doi.org/10.1172/JCI38027.

6. McLendon P.M., Robbins J. Desmin-related cardiomyopathy: An unfolding story. American Journal of Physiology - Heart and Circulatory Physiology 2011;301. https://doi.org/10.1152/ajpheart.00601.2011.

7. van Spaendonck-Zwarts K.Y., van Hessem L., Jongbloed J.D.H., et al. Desmin-related myopathy. Clinical Genetics 2011;80:354-66. https://doi.org/10.1111/j.1399-0004.2010.01512.x.

8. Li Z., Mericskay M., Agbulut O., et al. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. Journal of Cell Biology 1997;139:129-44. https://doi.org/10.1083/jcb.139.1.129.

9. Goldfarb L.G., Park K.Y., Cervenákova L., et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nature Genetics 1998;19:402-3. https://doi.org/10.1038/1300.

10. Arbustini E., Pasotti M., Pilotto A., et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. European Journal of Heart Failure 2006;8:477-83. https://doi.org/10.1016/j.ejheart.2005.11.003.

11. HGMD® DES gene result n.d. http://www.hgmd.cf.ac.uk/ac/gene.php?gene=DES (accessed September 14, 2020).

12. Capetanaki Y., Papathanasiou S., Diokmetzidou A., et al. Desmin related disease: A matter of cell survival failure. Current Opinion in Cell Biology 2015;32:113-20. https://doi.org/10.1016/j.ceb.2015.01.004.

13. Goldfarb L.G., Olivé M., Vicart P., et al. Intermediate filament diseases: Desminopathy. Advances in Experimental Medicine and Biology 2008;642:131-64. https://doi.org/10.1007/978-0-387-84847-1_11.

14. Taylor M.R.G., Slavov D., Ku L., et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 2007;115:1244-51. https://doi.org/10.1161/CIRCULATIONAHA.106.646778.

15. Hunt S.A., Abraham W.T., Chin M.H., et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. Circulation 2005;112. https://doi.org/10.1161/circulationaha.105.167586.

16. Heckmann M.B., Bauer R., Jungmann A., et al. AAV9-mediated gene transfer of desmin ameliorates cardiomyopathy in desmin-deficient mice. Gene Therapy 2016;23:673-9. https://doi.org/10.1038/gt.2016.40.

17. Wang X., Klevitsky R., Huang W., et al. αB-Crystallin Modulates Protein Aggregation of Abnormal Desmin. Circulation Research 2003;93:998-1005. https://doi.org/10.1161/01.RES.0000102401.77712.ED.

18. Pawelczak K.S., Gavande N.S., Vander Vere-Carozza P.S., et al. Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chemical Biology 2018;13:389-96. https://doi.org/10.1021/acschembio.7b00777.

19. McLaughlin H.M., Kelly M.A., Hawley P.P., et al. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC Medical Genetics 2013;14:68. https://doi.org/10.1186/1471-2350-14-68.

20. Brinkman E.K., Chen T., Amendola M., et al. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research 2014;42. https://doi.org/10.1093/nar/gku936.


Для цитирования:


Кочергин-Никитский К.С., Лавров А.В., Заклязьминская Е.В., Смирнихина С.А. Использование CRISPR/Cas9 для нокаута аллелей гена DES, несущих гетерозиготные gain-of-function мутации, связанные с развитием десминопатии. Медицинская генетика. 2021;20(7):37-44. https://doi.org/10.25557/2073-7998.2021.07.37-44

For citation:


Kochergin-Nikitsky K.S., Lavrov A.V., Zaklyazminskaya E.V., Smirnikhina S.A. CRISPR/Cas9 mediated knockout of the DES gene alleles with desminopathy-related heterozygous gain-of-function mutations. Medical Genetics. 2021;20(7):37-44. (In Russ.) https://doi.org/10.25557/2073-7998.2021.07.37-44

Просмотров: 70


ISSN 2073-7998 (Print)