Preview

Medical Genetics

Advanced search

Somatic mosaicism in sporadic retinoblastoma

https://doi.org/10.25557/2073-7998.2021.04.9-18

Abstract

Background. Sporadic retinoblastoma develops as a result of de novo mutations in both alleles of the RB1 gene. Often in sporadic retinoblastoma, the initial mutation in RB1 is mosaic, that is, it is formed in a postzygotic, early embryonic cell, which leads to an uneven distribution of mutant clones between different tissues of the body. The ability to identify a mosaic variant of a mutation in the RB1 gene is important for both medical genetic counseling and clinical management of patients, since mosaicism affects the development of the clinical picture of the disease, the risk of developing a tumor in the other eye, as well as other tumors, and the risk of mutation transmission to the next generation. Aim: to establish the frequency and spectrum of somatic mosaic mutations in the RB1 gene in patients with sporadic retinoblastoma and to quantify the content of the mutant allele in cases with mosaicism. Methods. The study was carried out on the DNA of blood lymphocytes from patients with sporadic retinoblastoma. Screening of point mutations, small insertions/deletions in the RB1 gene was performed by semiconductor high-throughput parallel sequencing (NGS). Exclusion of gross deletions in the RB1 gene was performed by MLPA. To search for mosaic mutations with a very low representation (less than 10%) of the mutant allele, an in-depth analysis of the NGS data was developed an in-house algorithm based on bioinformatic and statistical approaches. To verify mosaic pathogenic mutations identified with NGS, Sanger sequencing was used. Results. Mosaic mutations were found more common among patients with sporadic unilateral form of retinoblastoma than in those with sporadic bilateral form; the differences are statistically significant. At the same time, the frequencies of mosaic mutations with a high and low representation of mutant alleles between the groups of patients with unilateral and bilateral retinoblastoma did not differ significantly. All mosaic mutations are null alleles; mosaic missense mutations were not found in our patients’ cohort. No mosaic mutations were detected in the 1st and 2nd exons of the RB1 gene, located proximal to the alternative promoter, the imprinting of which determines the penetrance of mutations depending on the parental origin of the mutant allele. Conclusion. The use of deep high-throughput parallel sequencing in combination with an improved algorithm for analyzing the NGS results, aimed at identifying mosaic mutations, increases the efficiency of DNA diagnostics of retinoblastoma, contributing to the improvement of medical genetic counseling and treatment of patients.

About the Authors

E. A. Alekseeva
Research Centre for Medical Genetics; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation


K. O. Karandasheva
Research Centre for Medical Genetics
Russian Federation


O. V. Babenko
Research Centre for Medical Genetics
Russian Federation


V. M. Kozlova
N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation
Russian Federation


T. L. Ushakova
N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation
Russian Federation


T. P. Kazubskaya
N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation
Russian Federation


A. S. Tanas
Research Centre for Medical Genetics
Russian Federation


D. V. Zaletaev
Research Centre for Medical Genetics; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation


V. V. Strelnikov
Research Centre for Medical Genetics
Russian Federation


References

1. Babenko O.V., Zemlyakova V.V., Saakyan S.V., Brovkina A.F., Strelnikov V.V., Zaletaev D.V., Nemtsova M.V. RB1 and CDKN2A functional defects resulting in retinoblastoma. Molecular Biology. 2002; 36(5): 625-630. doi:10.1023/A:1020607010296.

2. Amitrano S., Marozza A., Somma S., Imperatore V., Hadjistilianou T., De Francesco S. et al. Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur J Hum Genet. 2015; Nov 23(11): 1523-30. doi: 10.1038/ejhg.2015.6.

3. Imperatore V., Pinto A.M., Gelli E., Trevisson E., Morbidoni V., Ftullanti E. et al. Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma. Eur J Hum Genet. 2018; Jan 26(7):1026-1037. doi: 10.1038/s10038-019-0696-z.

4. Lohmann D.R., Gallie B.L. Retinoblastoma. GeneRev [Internet]. Last update november 21, 2018.

5. Rodriguez-Martin C., Robledo C., Gomez-Mariano G., Monroz S., Sastre A., Abelairas J. et al. Frequency of low-level and high-level mosaicism in sporadic retinoblastoma: genotype-phenotype relationships. J Hum Genet. 2020; Jan 65(2):165-174. doi: 10.1038/s10038-019-0696-z.

6. Biesecker L.G., Spinner N.B. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013; May 14(5):307-320. doi:10.1038/nrg3424.6

7. Dehainault C., Golmard L., Millot G.A., Charpin A., Lauge A., Tarabeux J.et al. Mosaicism and prenatal diagnosis options: insights from retinoblastoma. Eur J Hum Genet. 2017; Feb 25(3):381-383. doi: 10.1038/ejhg.2016.174. Epub 2016 Dec 21.

8. Chen Z., Moran K., Richrds-Yutz J., Torrens E., Gerhart D.,Ganguly T. et al. Enhanced Sensitivity for Detection of Low-Level Germline Mosaic RB1 Mutations in Sporadic Retinoblastoma Cases Using Deep Semiconductor Sequencing. Hum Mutat. 2014; Mar 35(3): 384-391. doi:10.1002/humu.22488.

9. Rushlow D., Piovesan B., Zhang K., Prigoda-Lee N.L., Marchong M.N., Clark R.D. et al. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum Mutat. 2009; 30: 842-851. doi:10.1002/humu.20940.

10. Price E., Price K., Kolkiewicz K., Hack S., Reddy M.A., Hungerford J.L., et al. Spectrum of RB1 mutations identified in 403 retinoblastoma patients. J Med Genet. 2014;51: 208-14. doi:10.1136/jmedgenet-2013-101821.

11. Cohen A.S., Wilson S.L., Trinh J., Ye X.C. Detecting somatic mosaicism: considerations and clinical implications. Clin Genet. 2015;87:554-62. doi:10.1111/cge.12502.

12. Pagnamenta A.T., Lise S., Harrison V., Stewart H., Jayawant S., Quaghebeur G. et al. Exome sequencing can detect pathogenic mosaic mutations present at low allele frequencies. J Hum Genet. 2012;57:70-2. doi:10.1038/jhg.2011.128. Epub 2011 Dec 1.

13. Li W.L., Buckley J., Sanchez-Lra P.A., Maglinte D.T., Viduetsky L., Tatarinova T.V. et al. A Rapid and Sensetive Next-Generation Sequencing Method to Detect RB1 Mutations Improves Care for Retinoblastoma Patients and Their Families. J Mol Diagn. 2016; Jul 18(4):480-493. doi: 10.1016/j.jmoldx.2016.02.006.

14. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3-23.

15. Алексеева Е.А., Бабенко О.В., Козлова В.М., Ушакова Т.Л., Саакян С.В., Танас А.С. и др. Результаты использования новой медицинской технологии комплексной ДНК-диагностики ретинобластомы. Медицинская генетика 2017; 16(10): 41-46.

16. Карандашева К.О., Аношкин К.И., Володин И.В., Кузнецова Е.Б., Залетаев Д.В., Стрельников В.В., Танас А.С. Исключение неверно картированных прочтений при таргетном высокопроизводительном секвенировании ДНК с использованием технологии Ion AmpliSeq. Медицинская генетика. 2018;17(5):19-22. doi: 10.25557/2073-7998.2018.05.19-22.

17. Rohlin, A., Wernersson, J., Engwall, Y., Wiklund, L., Björk, J., & Nordling, M. (2009). Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Human mutation, 30(6), 1012-1020. doi: 10.1002/humu.20980.

18. Алексеева Е.А., Бабенко О.В., Козлова В.М., Ушакова Т.Л., Казубская Т.П., Саакян С.В., Танас А.С., Залетаев Д.В., Стрельников В.В. Эффект родительского происхождения мутации в гене RB1 при наследственной ретинобластоме с низкой пенетрантностью. Медицинская генетика. 2019;18(8):21-28. doi: 10.25557/2073-7998.2019.08.21-28.


Review

For citations:


Alekseeva E.A., Karandasheva K.O., Babenko O.V., Kozlova V.M., Ushakova T.L., Kazubskaya T.P., Tanas A.S., Zaletaev D.V., Strelnikov V.V. Somatic mosaicism in sporadic retinoblastoma. Medical Genetics. 2021;20(4):9-18. (In Russ.) https://doi.org/10.25557/2073-7998.2021.04.9-18

Views: 469


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)