Preview

Medical Genetics

Advanced search

The role and interaction of polymorphic variants of non-allelic genes ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1, PPARG in the increase in the risk of obesity in Kyrgyz Republic

https://doi.org/10.25557/2073-7998.2021.01.44-56

Abstract

In this study, we investigated whether polymorphisms g.15661G>T (ADIPOQ), p.A222V (MTHFR), p.Q192R (PON1), p.K23E (KCNJ11), g.53341C>T (TCF7L2), p.V109D (ITLN1) and p.P12A (PPARG) are associated with obesity in the Kyrgyz population. We genotyped 245 nonrelated adults Kyrgyz individuals. 130 patients (male - 65 (50,0%), female - 65 (50,0%) with obesity and 115 non-obese control subjects (male - 62 (53,9%), female - 53 (46,1%). Genotyping of single-nucleotide polymorphism was performed by PCR-RFLP method. Analysis of intergenic interactions conducted with MDR v.3.0.2 program. Тhe V allele and the VV genotype of the p.A222V locus (MTHFR), as well as the K allele and the KK genotype of the p.K23E locus (KCNJ11) increase risk of obesity in the Kyrgyz population. Subjects having the VV genotype of p.A222V locus (MTHFR) and KK genotype of the p.K23E locus (KCNJ11) had 3-fold [OR = 3,49 (1,44-8,45); p = 0,001] higher risk of developing compared with subjects carrying neither of these genotypes.

About the Authors

Zh. T. Isakova
Institute of Molecular Biology and Medicine
Russian Federation


V. N. Kipen
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Russian Federation


K. SAMARA Akynbek
Institute of Molecular Biology and Medicine
Russian Federation


K. A. Aitbaev
Institute of Molecular Biology and Medicine
Russian Federation


N. M. Aldasheva
Institute of Molecular Biology and Medicine
Russian Federation


E. T. Talaibekova
Institute of Molecular Biology and Medicine
Russian Federation


S. B. Mukeeva
Institute of Molecular Biology and Medicine
Russian Federation


K. MEERIM Osmonkul
Institute of Molecular Biology and Medicine
Russian Federation


S. T. Beishenalieva
Institute of Molecular Biology and Medicine
Russian Federation


E. M. Mirrakhimov
National Center of Cardiology and Internal Medicine
Russian Federation


References

1. ВОЗ. Здоровье-2020: основы европейской политики и стратегия для XXI века. https://www.euro.who.int/__data/assets/pdf_file/0017/215432/Health2020-Long-Rus.pdf

2. Derek J. Chadwick. Gail Cardew, et al., Genetics of Obesity in Humans: Current Issues. 28 September 2007.

3. Stunkard A.J., Sorensen T.I.A. Obesity and socioeconomic status-a complex relation. N Engl J Med. 1993; 329:1036-1037. doi: 10.1007/s13679-015-0185-4

4. Speliotes E.K., Willer C.J., Berndt S.I., et al. Association analyses of 249796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010; 42 (11): 937-948. doi: 10.1038/ng.686.

5. Teasdale T.W., Sørensen T.I., Stunkard A.J., et al. Genetic and early environmental components in sociodemographic influences on adult body fatness. BMJ. 1990;300(6740):1615-8. DOI: 10.1136/bmj.300.6740.1615

6. Teasdale T.W., Sørensen T.I., Stunkard A.J., et al. Intelligence and educational level in relation to body mass index of adult males. Human Biology. 1992; 64(1):99-106. DOI: 10.1371/journal.pone.0016290

7. Gu H.F., Abulaiti A., Ostenson C.G., et al. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish caucasians. Diabetes. 2004; 1:S31-5. DOI: 10.2337/diabetes.53.2007.s31

8. Hara K., Boutin P., Mori Y., et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002; 51(2):536-40. DOI:10.2337/diabetes.51.2.536

9. Rosenblatt D.S. Methylenetetrahydrofolate reductase. Clinical and Investigative medicine. Medecine Clinique et Experimentale. 2001; 24(1):56-59

10. Schwanstecher C., Schwanstecher M. et al. (IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes. 2002;51(3):875-9. DOI: 10.2337/diabetes.51.3.875

11. Loder M.K., da Silva Xavier G., McDonald A., et al., TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta-cells. Biochem Soc Trans. 2008;36(Pt 3):357-9. doi: 10.1042/BST0360357.

12. Cauchi S., El Achhab Y., Choquet H. et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007; 85, 777-782. https://doi.org/10.1007/s00109-007-0203-4

13. Schäffler A., Zeitoun M., Wobser H., et al. Herfarth H.Frequency and significance of the novel single nucleotide missense polymorphism Val109Asp in the human gene encoding omentin in Caucasian patients with type 2 diabetes mellitus or chronic inflammatory bowel diseases. Cardiovasc Diabetol. 2007; 13;6:3. DOI:10.1186/1475-2840-6-3

14. Pan H.Y., Guo L., Li Q., et al. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88(1):29-33. doi: 10.1016/j.diabres.2010.01.013.

15. Vaccaro O., Lapice E., Monticelli A., et al. Pro12Ala polymorphism of the PPARgamma2 locus modulates the relationship between energy intake and body weight in type 2 diabetic patients. Diabetes Care. 2007; 30(5):1156-61. https://doi.org/10.2337/dc06-1153.

16. Zayani N., Omezzine A., Boumaiza I., et al. Association of ADIPOQ, leptin, LEPR, and resistin polymorphisms with obesity parameters in Hammam Sousse Sahloul Heart Study. J Clin Lab Anal. 2017;31:e22148. doi: 10.1002/jcla.22148.

17. Yin R.X., Wu D.F., Miao L., et al. Several genetic polymorphisms interact with overweight/obesity to influence serum lipid levels. Cardiovascular Diabetology. 2012, 11:123. https://doi.org/10.1186/1475-2840-11-123

18. Wrzosek M., Sawicka A., Wrzosek M., et al. Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch Med Sci. 2019; 15, 2: 321-329. DOI: https://doi.org/10.5114/aoms.2017.69638.

19. Kassim N.B., Huri H.Z., Vethakkan S.R., et al. Genetic polymorphisms associated with overweight and obesity in uncontrolled Type 2 diabetes mellitus. Biomarkers in Medice. 2016;10(4):403-15. doi: 10.2217/bmm-2015-0037.

20. Fu M., Chen H., Li X., et al. Association of Pro12Ala variant in peroxisome proliferator-activated receptor-gamma2 gene with type 2 diabetes mellitus. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2002;19(3):234-8.

21. Fu L., Zhang M., Hu Y.Q., et al. Gene-gene interactions and associations of six hypertension related single nucleotide polymorphisms with obesity risk in a Chinese children population. Gene. 2018;679:320-327. doi: 10.1016/j.gene.2018.09.019.

22. Goni L., Cuervo M., Milagro F.I., et al. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr. 2015;10(1):445. doi: 10.1007/s12263-014-0445-z.

23. Cauchi S., Nead K.T., Choquet H., et al. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008;9:45. doi: 10.1186/1471-2350-9-45.

24. Morgan A.R., Thompson J.M., Murphy R., et al. Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11:125. doi: 10.1186/1471-2350-11-125

25. DeVos L., Chanson A., Liu Z., et al. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr. 2008;88(4):1149-58. doi: 10.1093/ajcn/88.4.1149

26. Wu L.L., Wu J.T. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta. 2002;322(1-2):21-8. doi:10.1016/s0009-8981(02)00174-2

27. Kos B.J.P., Leemagz S.Y., McCormack C.D., et al. The association of parental methylenetetrahydrofolate reductase polymorphisms (MTHFR 677C > T and 1298A > C) and fetal loss: a case-control study in South Australia. J Matern Fetal Neonatal Med. 2020;33(5):752-757. doi: 10.1080/14767058.2018.1500546

28. Jiajin L., Shuyan C., Ying W., et al. Genetic polymorphisms in folate metabolism as risk for Down syndrome in the southern China. J Matern Fetal Neonatal Med. 2019;32(12):2030-2035. doi: 10.1080/14767058.2018.1424818.

29. Pérez-Ramírez C., Cañadas-Garre M., Alnatsha A., et al. Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell lung cancer patients. Pharmacogenomics J. 2019;19(2):164-177. doi: 10.1038/s41397-018-0014-8.

30. Ma L., Jiang Y., Kong X., Liu Q., et al. Interaction of MTHFR C677T polymorphism with smoking in susceptibility to diabetic nephropathy in Chinese men with type 2 diabetes. Journal of Human Genetics. 2018; 64(1):23-28 doi: 10.1038/s10038-018-0531-y

31. Lewis S.J., Lawlor D.A., Nordestgaard B.G., et al. The methylenetetrahydrofolate reductase C677T genotype and the risk of obesity in three large population-based cohorts. Eur J Endocrinol. 2008; doi: 10.1530/EJE-08-0056

32. Borai I.H., Soliman A.F., Hendawey M.H., et al.Association of MTHFR C677T and ABCA1 G656A polymorphisms with obesity among Egyptian children. Gene Reports. 2018; Volume 11, P. 143-149. DOI: 10.1016/j.genrep.2018.03.011

33. Mansur R.B., Brietzke E., McIntyre R.S. et al. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 2015;52:89-104. doi: 10.1016/j.neubiorev.2014.12.017.

34. Amare A.T., Schubert K.O., Klingler-Hoffmann M., et al. The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Transl Psychiatry. 2017;7(1):e1007. doi: 10.1038/tp.2016.261.

35. Мазо Г.Э., Кибитов А.О. Механизмы формирования коморбидности депрессии и ожирения. Обозрение психиатрии и медицинской психологии имени В.М. Бухтерева. 2018; 1: 65-78.

36. Zhou D., Zhang D., Liu Y., et al. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009;54(7):433-5. doi: 10.1038/jhg.2009.54.

37. Sakamoto Y., Inoue H., Keshavarz P., et al. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet. 2007; 52(10):781-793. doi: 10.1007/s10038-007-0190-x.

38. Koo B.K., Cho Y.M., Park B.L., et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007; 24:178-186 doi:10.1111/j/1464-5491.2006.02050.x

39. Gloyn A.L., Weedon M.N., Owen K.R., et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568-572. doi:10.2337/diabetes.52.2.568.

40. Исакова Ж.Т., Кипень В.Н., Талайбекова Э.Т., и др. Роль и взаимодействие полиморфных вариантов аллельных генов KCNJ11, ADIPOQ, ITLN1, LEP, TCF7L2 и PPARG в увлечении риска развития сахарного диабета типа 2 в Кыргызской Республике. Молекулярная медицина. 2019; 4: 34-45.


Review

For citations:


Isakova Zh.T., Kipen V.N., Akynbek K.S., Aitbaev K.A., Aldasheva N.M., Talaibekova E.T., Mukeeva S.B., Osmonkul K.M., Beishenalieva S.T., Mirrakhimov E.M. The role and interaction of polymorphic variants of non-allelic genes ADIPOQ, MTHFR, PON1, KCNJ11, TCF7L2, ITLN1, PPARG in the increase in the risk of obesity in Kyrgyz Republic. Medical Genetics. 2021;20(1):44-56. (In Russ.) https://doi.org/10.25557/2073-7998.2021.01.44-56

Views: 618


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)