Preview

Medical Genetics

Advanced search

Multiple mutations in associated with LQTS genes in patients with life-threating ventricular tachyarrhythmias

Abstract

Long QT syndrome (LQTS) is the genetically determined disease characterized by the QT interval elongation at the electrocardiogram, a high risk of life-threatening arrhythmias and sudden cardiac death. This syndrome is determined by mutations in genes encoding ion channel proteins, as well as proteins indirectly associated with ion channels. 4.5-8% of patients with LQTS have more than one mutation in the genes associated with the development of channelopathies. Purpose of work: description of two clinical cases of patients with life-threatening arrhythmia in which a combination of rare mutant alleles in the genes associated with LQTS was detected. The clinical examination included 12-lead ECG, echocardiography, cardiac MRI with delayed contrast, and 24-hour ECG monitoring (SM ECG). Genetic testing was performed by next generation sequencing (NGS) using the TruSight ™ Cardio Sequencing Panel reagent kit (Illumina). Both patients with no burdened family history had malignant ventricular tachyarrhythmias, which required the implantation of a cardioverter defibrillator. The NGS method allowed to detect a combination of substitutions in the genes ANK2 (c.9161C>G, p.Ala3054Gly, rs139007578) and KCNE1 (c.253G>A, p.Asp85Asn, rs1805128) in a patient with idiopathic ventricular tachycardia. In the patient with idiopathic ventricular fibrillation, the allelic variant was also found in the gene ANK2 (c.1397C>T, p.Thr466Met, rs786205722) and an additional substitution in the gene SNTA1 (c.1877>T, (p.Ala263Ser), rs150576530). If patients have several genetic defects, a “cumulative effect” of mutations can be observed, phenotypically manifested by a severe course of the disease with unfavorable outcomes. It has been shown that when genotyping patients with idiopathic life-threatening tachyarrhythmias, the use of panels with a large number of genes associated with cardiovascular pathology is quite justified. A comprehensive study of genes can increase the diagnostic and prognostic value of genetic screening.

About the Authors

N. . Chakova
State scientific institution «The Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Russian Federation


S. . Komissarova
Republican Scientific and Practical Centre «Cardiology»
Russian Federation


S. . Niyazova
State scientific institution «The Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Russian Federation


T. . Dolmatovich
State scientific institution «The Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Russian Federation


E. . Rebeko
Republican Scientific and Practical Centre «Cardiology»
Russian Federation


References

1. Schwartz P.J., Crotti L., Insolia R. Long-QT syndrome: from genetics to management Circ Arrhythm Electrophysiol 2012; 5(4): 868-877. doi:10.1161/CIRCEP.111.962019.

2. Giudicessi J.R., Ackerman M.J. Genotype- and phenotype-guided management of congenital long QT syndrome. Curr Probl Cardiol 2013; 38(10): 417-455. doi:10.1016/j.cpcardiol.2013.08.001.

3. Ackerman M.J., Priori S.G., Willems S. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011; 8(8): 1308-1339. doi:10.1016/j.hrthm.2011.05.020.

4. Mohler P.J., Schott J.J., Gramolini A.O. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003; 421(6923): 634-639. doi:10.1038/nature01335.

5. Wu G., Ai T., Kim J.J. et al. Alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol 2008; 1(3): 193-201. doi:10.1161/CIRCEP.108.769224.

6. Napolitano C., Priori S.G., Schwartz P.J. et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 2005; 294(23): 2975-2980. doi:10.1001/jama.294.23.2975.

7. Ackerman M.J., Tester D.J., Jones G.S. et al. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc 2003; 78(12): 1479-1487. doi:10.4065/78.12.1479.

8. Nishio Y., Makiyama T., Itoh H. et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol 2009; 54(9): 812-819. doi:10.1016/j.jacc.2009.06.005.

9. Husser D., Ueberham L., Hindricks G. et al. Rare variants in genes encoding the cardiac sodium channel and associated compounds and their impact on outcome of catheter ablation of atrial fibrillation. PLoS One 2017; 12(8): e0183690. doi:10.1371/journal.pone.0183690.

10. Hashemi S.M., Hund T.J., Mohler P.J. Cardiac ankyrins in health and disease. J Mol Cell Cardiol 2009; 47(2): 203-209. doi:10.1016/j.yjmcc.2009.04.010.

11. Ichikawa M., Aiba T., Ohno S. et al. Phenotypic Variability of ANK2 Mutations in Patients With Inherited Primary Arrhythmia Syndromes. Circ J 2016; 80(12): 2435-2442. doi:10.1253/circj.CJ-16-0486.

12. Le Scouarnec S., Bhasin N., Vieyres C. et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A 2008; 105(40): 15617-15622. doi:10.1073/pnas.0805500105.

13. Mohler P.J., Gramolini A.O., Bennett V. Ankyrins. J. Cell Sci Eur 2002; (115): 1565-1566.

14. Musa H., Murphy N.P., Curran J. et al. Common human ANK2 variant confers in vivo arrhythmia phenotypes. Heart Rhythm 2016; 13(9): 1932-1940. doi:10.1016/j.hrthm.2016.06.012.

15. Mohler P.J., Yoon W., Bennett V. Ankyrin-B targets beta2-spectrin to an intracellular compartment in neonatal cardiomyocytes. J Biol Chem 2004; 279(38): 40185-40193. doi:10.1074/jbc.M406018200.

16. Cheng J., Van Norstrand D.W., Medeiros-Domingo A. et al. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol 2009; 2(6): 667-676. doi:10.1161/CIRCEP.109.891440.

17. Genetics Home Reference [Электронный ресурс]. Режим доступа: https://ghr.nlm.nih.gov/gene/KCNE1 (дата обращения: 13.06.2020).

18. Lane C.M., Giudicessi J.R., Ye D. et al. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Heart Rhythm 2018; 15(8): 1223-1230. doi:10.1016/j.hrthm.2018.03.038.


Review

For citations:


Chakova N., Komissarova S., Niyazova S., Dolmatovich T., Rebeko E. Multiple mutations in associated with LQTS genes in patients with life-threating ventricular tachyarrhythmias. Medical Genetics. 2020;19(12):47-55. (In Russ.)

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)