Preview

Medical Genetics

Advanced search

Mutation variability at polycystic kidney disease detected by NGS

Abstract

Polycystic kidney disease is a heterogeneous group of autosomal dominant or autosomal recessive disorders with age of manifestation varying from prenatal period to adulthood. Autosomal recessive polycystic kidney disease is caused by mutations in the PKHD1 gene. Approximately 85% of all autosomal dominant polycystic kidney disease cases are caused by mutations in the PKD1 gene, and around 15% - by mutations in the PKD2 gene. All these genes are large, and mutations were found to be scattered throughout the genes without any clustering. Therefore, mutation detection requires a lot of time, money, and effort. Due to clinical and genetic diversity of polycystic kidney disease, the search for mutations has to be carried out in several genes. Mass parallel sequencing (MPS) allows to analyze several genes simultaneously regardless of their size. 254 families with polycystic kidney disease were examined using mass parallel sequencing with a gene panel that included PKHD1, PKD1, PKD2, HNF1B and GANAB. Two variants in PKHD1 were found in 49 families (19%), one variant - in 9 families (3.5%); in PKD1 62 variants were detected (24.5%), in PKD2 - 6 variants (2.5%), in HNF1B - 9 variants (3.5%). In 119 families (47%) there were no mutations in the target genes. Among 66 patients from families with autosomal dominant polycystic kidney disease, 39 patients (59%) had mutations in the PKD1 gene. Out of 59 sporadic cases, 10 patients (17%) had 2 variants in PНKD1, 12 patients (20%) - in PKD1. 38 patients (29.5%) out of 129 patients with unknown type of inheritance had 2 variants in PНKD1, 11 patients (8.5%) - in PKD1, 4 patients (3%) - in PKD2, 5 patients (4%) - in HNF1B. Mass parallel sequencing allows to carry out relatively rapid molecular genetic analysis of several genes simultaneously for patients with symptoms of polycystic kidney disease.

About the Authors

N. N. Vasserman
Research Centre for Medical Genetics
Russian Federation


A. V. Polyakov
Research Centre for Medical Genetics
Russian Federation


References

1. Zerres K., Rudnic-Schoneborn S., Steinkamm C. et al. Autosomal recessive polycystic kidney disease. J.Mol.Med. 1998; 76(5):303-309.

2. Bergmann C., Senderek J., Windelen E. et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67(3):829-848. DOI: 10.1111/j.1523-1755.2005.00148.

3. Obeidova L., Seeman T., Elisakova V. et al. Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC Medical Genetics. 2015;16:116. DOI: 10.1186/s12881-015-0261-3.

4. Bergmann C., von Bothmer J., Bruchle N.O. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J.Am.Soc.Nephrol. 2011;22(11):2047-2056. DOI: 10.1681/ASN.2010101080.

5. Roy S., Dillon M.J., Trompeter R.S., Barratt T.M. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr.Nephrol. 1997;11(3):302-306.

6. Ward C.J., Hogan M.C., Rossetti S. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat.Genet. 2002;30(3):259-269. DOI: 10.1038/ng833.

7. Onuchic L.F., Furu L., Nagasawa Y. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am.J.Hum.Genet. 2002;70(5):1305-1317. DOI: 10.1086/340448.

8. Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front.Pediatr. 2018;5:221. DOI: 10.3389/fped.2017.00221.

9. Bergmann C., Kupper F., Schmitt C.P. et al. Multi-exon deletions of the PKHD1 gene cause autosomal recessive polycystic kidney disease (ARPKD). J.Med.Genet. 2005;42(10):е63. DOI: 10.1136/jmg.2005.032318.

10. Bergmann C., Senderek J., Sedlacek B. et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J.Am.Soc.Nephrol. 2003;14(1):76-89.

11. Lu H., Galeano M.C.R., Ott E. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nature Genet. 2017;49(7):1025-1034. DOI: 10.1038/ng.3871.

12. Bergmann C. ARPKD and early manifestation of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr.Nephrol. 2015;30(1):15-30. DOI: 10.1007/s00467-013-2706-2.

13. Cornec-Le Gall E., Audrézet M.P., Chen J.M. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J.Am.Soc.Nephrol. 2013;24(6):1006-1013. DOI: 10.1681/ASN.2012070650.

14. Harris P.C., Torres V.E. Polycystic kidney disease. Annu.Rev.Med. 2009;60:321-337. DOI: 10.1146/annurev.med.60.101707.125712.

15. Hughes J., Ward C.J., Peral B. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genet. 1995;10:151-160.

16. Hayashi T., Mochizuki T., Reynolds D. M. et al. Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics. 1997;44:131-136.

17. Lanktree M.B., Iliuta I.A., Haghighi A. et al. Evolving role of genetic testing for the clinical management of autosomal dominant polycystic kidney disease. Nephrol.Dial. Transplant. 2018. DOI: 10.1093/ndt/gfy261.

18. Bergmann C., von Bothmer J., Ortiz Brüchle N. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J.Am.Soc. Nephrol. 2011;22(11):2047-2056. DOI: 10.1681/ASN.2010101080.

19. Porath B., Gainullin V.G., Cornec-Le Gall E. et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am.J.Hum.Genet. 2016;98(6):1193-1207. DOI: 10.1016/j.ajhg.2016.05.004.

20. Cornec-Le Gall E., Olson R.J., Besse W. et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am.J.Hum.Genet. 2018;102(5): 832-844. DOI: 10.1016/j.ajhg.2018.03.013.

21. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика 2019; 18(2): 3-23. DOI: 10.25557/2073-7998.2019.02.3-23.

22. Вассерман Н.Н., Поляков А.В. Новый вариант p.Cys3024Tyr и частые мутации в гене PKHD1, выявленные в семьях с аутосомно-рецессивной поликистозной болезнью почек в Российской Федерации. Медицинская генетика. 2019;18(1): 3-7. DOI:10.25557/2073-7998.2019.01.3-7.

23. Melchionda S., Palladino T., Castellana S. et al. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis. J.Hum.Genet. 2016;61(9):811-821. DOI: 10.1038/jhg.2016.58.

24. Audrézet M.P., Cornec-Le Gall E., Chen J.M. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat. 2012;33(8):1239-1250. doi: 10.1002/humu.22103.

25. Carrera P., Calzavara S., Magistroni R. et al. Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Sci Rep. 2016;6:30850. doi: 10.1038/srep30850.


Review

For citations:


Vasserman N.N., Polyakov A.V. Mutation variability at polycystic kidney disease detected by NGS. Medical Genetics. 2020;19(12):25-37. (In Russ.)

Views: 510


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)