Preview

Medical Genetics

Advanced search

Molecular bases of primary monogenic dyslipidemia

Abstract

Dyslipidemia is one of the most common metabolic disorders, the dominant risk factor for diseases of the cardiovascular system. Timely diagnosis and correction of the lipid profile can significantly reduce morbidity and mortality from cardiovascular diseases. An extensive heterogeneous group of diseases leads to persistent changes in the lipid profile. This review includes a description of lipid metabolism, the molecular basis, and clinical characteristics of primary monogenic dyslipidemia. Mutations in twenty-five genes are responsible for most monogenic dyslipidemias. On the basis of changes in the lipid profile, five groups of phenotypes are distinguished with extreme deviation in the levels of lipid profile markers: with high and low levels of low density lipoproteins, with high and low levels of high density lipoproteins, with high levels of triglycerides. For each phenotype, the associated genes are indicated, the gene with the most frequently detected mutations is indicated. The molecular basis of the most common dyslipidemia, familial hypercholesterolemia, is described in detail. Genetic testing of patients with dyslipidemia makes it possible to make an accurate diagnosis, the possibility of cascade examination and counseling of the patient’s family members, the possibility of early diagnosis to prevent or later manifest complications.

About the Authors

O. N. Ivanova
Research Centre for Medical Genetics
Russian Federation


P. A. Vasiliev
Research Centre for Medical Genetics; Institute of Gene Biology, Russian Academy of Sciences
Russian Federation


E. Yu. Zakharova
Research Centre for Medical Genetics
Russian Federation


References

1. Hegele R.A., Ban M.R., Cao H., et al. Targeted next-generation sequencing in monogenic dyslipidemias. Curr Opin Lipidol. 2015;26(2):103-113. DOI: 10.1097/MOL.0000000000000163.

2. Wiler C.J., Schmidt E.M., Sengupta S., et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013; 45:1274-1283. DOI: 10.1038/ng.2797

3. Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta. 2016;454:143-185. DOI: 10.1016/j.cca.2015.10.033

4. Toth P.P. Reverse cholesterol transport: high-density lipoprotein’s magnificent mile. Current Atherosclerosis Reports. 2003;5(5):386-393. DOI: 10.1007/s11883-003-0010-5

5. Oram J.F., Lawn R.M. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001;42:1173-1179.

6. Huang R., Silva R.A., Jerome W.G, et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol.2011;18(4):416-422. DOI: 10.1038/nsmb.2028

7. Annema W., Tietge U.J. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012;9:25. DOI: 10.1186/1743-7075-9-25

8. Rader D.J., Alexander E.T., Weibel G.L., at al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009; 50:S189-94. DOI: 10.1194/jlr.R800088-JLR200

9. Jakulj L., van Dijk T.H., de Boer J.F., et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab 2016; 24:783-794. DOI: 10.1016/j.cmet.2016.10.001

10. Lusis A. J. Atherosclerosis. Nature 2000;407, 233-241. DOI: 10.1038/35025203

11. Benn M., Watts G.F., Tybjærg-Hansen A., Nordestgaard B.G. Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur Heart J 2016;37:1384-1394. DOI: 10.1093/eurheartj/ehw028

12. Lahtinen A.M., Havulinna A.S., Jula A., Salomaa V., Kontula K. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 2015;238:64-69 DOI: 10.1016/j.atherosclerosis.2014.11.015

13. Akioyamen L.E., Genest J., Shan S.D., et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open. 2017;7:e016461. DOI: 10.1136/bmjopen-2017-016461

14. Dieckmann M., Dietrich M.F., Herz J. Lipoproteinreceptors: anevolutionarily ancient multifunctional receptor family. Biol Chem 2010; 391:1341-1363. DOI: 10.1515/BC.2010.129

15. Stenson P.D., Mort M., Ball E.V., et al. HGMD® Professional 2020.1 The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136:665-677.

16. Soutar A.K., Naoumova R.P. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007; 4:214-225. DOI: 10.1038/ncpcardio0836

17. Grenkowitz T., Kassner U., Wuhle Demuth M., et al. Clinical characterization and mutation spectrum of German patients with familial hypercholesterolemia. Atherosclerosis. 2016;253:88-93. DOI: 10.1016/j.atherosclerosis.2016.08.037

18. Mollaki V., Drogari E. Genetic causes of monogenic familial hypercholesterolemia in the Greek population: Lessons, mistakes, and the way forward. J Clin Lipidol. 2016;10(4):748-756. DOI: 10.1016/j.jacl.2016.02.020

19. Kusters D.M., Huijgen R., Defesche J.C., et al. Founder mutations in the Netherlands: geographical distribution of the most prevalent mutations in the low-density lipoprotein receptor and apolipoprotein B genes. Neth Heart J. 2011;19(4):175-182. DOI: 10.1007/s12471-011-0076-6

20. Futema M., Whittall R.A., Kiley A., et al. Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229(1):161-168. DOI: 10.1016/j.atherosclerosis.2013.04.011

21. Iacocca M.A., Hegele R.A. Role of DNA copy number variation in dyslipidemias. Curr Opin Lipidol. 2018;29(2):125-132. DOI: 10.1097/MOL.0000000000000483

22. Bertolini S., Pisciotta L., Fasano T., et al. The study of familial hypercholesterolemia in Italy: a narrative review. Atheroscler Suppl 2017; 29:1-10. DOI: 10.1016/j.atherosclerosissup.2017.07.003

23. Miyake Y., Yamamura T., Sakai N., et al. Update of Japanese common LDLR gene mutations and their phenotypes: mild type mutation L547V might predominate in the Japanese population. Atherosclerosis 2009; 203: 153-160. DOI: 10.1016/j.atherosclerosis.2008.07.005

24. Elbitar S., Susan-Resiga D., Ghaleb Y., et al. New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep. 2018;8(1):1943. doi: 10.1038/s41598-018-20281-9. DOI: 10.1038/s41598-018-20281-9

25. Huang L.S., Ripps M.E., Korman S.H., et al. Hypobetalipoproteinemia Due to an Apolipoprotein B Gene Exon 21 Deletion Derived by Alu-Alu Recombination. J Biol Chem. 1989; Jul 5;264(19):11394-11400.

26. Blesa S., Vernia S., Garcia-Garcia A.B., et al. A new PCSK9 gene promoter variant affects gene expression and causes autosomal dominant hypercholesterolemia. J Clin Endocrinol Metab 2008; 93:3577-3583. DOI: 10.1210/jc.2008-0269

27. Iacocca M.A., Wang J., Sarkar S., et al. Whole-gene duplication of PCSK9 as a novel genetic mechanism for severe familial hypercholesterolemia. Can J Cardiol. 2018; 34:1316-1324. DOI: 10.1016/j.cjca.2018.07.479

28. Seidah N.G., Awan Z., Chrétien M., Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022-36. DOI: 10.1161/CIRCRESAHA.114.301621

29. Arca M., Zuliani G., Wilund K., et al. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH a clinical and molecular genetic analysis. Lancet. 2002; 359: 817-841. DOI: 10.1016/S0140-6736(02)07955-2

30. Johansen C.T., Dube J.B., Loyzer M.N., et al. Lipidseq: A next-generation clinical resequencing panel for monogenic dyslipidemias. J Lipid Res. 2014;55:765-772. DOI: 10.1194/jlr.D045963

31. Buonuomo P.S., Iughetti L., Pisciotta L., et al. Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. Atherosclerosis. 2017;262:71-77. DOI: 10.1016/j.atherosclerosis.2017.05.002

32. Wang W., Jiang L., Chen P.P., et al. A case of sitosterolemia misdiagnosed as familial hypercholesterolemia: a 4-year follow-up. J Clin Lipidol. 2018;12:236-239. DOI: 10.1016/j.jacl.2017.10.008

33. Brinton E.A., Hopkins P.N., Hegele R.A., et al. The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. J Clin Lipidol. 2017;12:152-161. https://doi.org/10.1016/j.jacl.2017. 10.013.

34. Fouchier S.W., Defesche J.C. Lysosomal acid lipase A and the hypercholesterolaemic phenotype, Curr. Opin. Lipidol. 2013; 24:332-338. DOI: 10.1097/MOL.0b013e328361f6c6

35. Carter A., Brackley S.M., Gao J., Mann J.P. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: A rare condition that mimics NAFLD. J Hepatol. 2019;70(1):142-150. DOI: 10.1016/j.jhep.2018.09.028

36. Wintjens R., Bozon D., Belabbas K., et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J Lipid Res. 2016;57(3):482-91. DOI: 10.1194/jlr.P055699

37. De Beer F., Stalenhoef A.F.H., Hoogerbrugge N., et al. Expression of type 3 hyperlipoproteinemia in apolipoprotein E2 (Arg158-Cys) homozygotes is associated with hyperinsulinemia, Arterioscler. Thromb. Vasc. Biol. 2002;22:294-299. DOI: 10.1161/hq0202.102919

38. Welty F.K. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25(3):161-8. DOI: 10.1097/MOL.0000000000000072

39. Noto D., Cefalu A.B., Valenti V., et al. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler Thromb Vasc Biol. 2012; 32:805-809. DOI: 10.1161/ATVBAHA.111.238766

40. Lee J., Hegele R.A. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014 May;37(3):333-339. DOI: 10.1007/s10545-013-9665-4

41. Sané A.T., Seidman E., Peretti N., et al. Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture. Arterioscler Thromb Vasc Biol. 2017;37(12):2243-2251. DOI: 10.1161/ATVBAHA.117.310121

42. Blanco-Vaca F., Martin-Campos J.M., Beteta-Vicente M. et al. Molecular Analysis of APOB, SAR1B, ANGPTL3, and MTTP in Patients With Primary Hypocholesterolemia in a Clinical Laboratory Setting: Evidence Supporting Polygenicity in Mutation-Negative Patients. Atherosclerosis. 2019;283:52-60. DOI: 10.1016/j.atherosclerosis.2019.01.036

43. Vitali C., Khetarpal S.A., Rader D.J. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep. 2017;19(12):132. DOI: 10.1007/s11886-017-0940-0

44. Dron J.S., Wang J., Low-Kam C., et al. Polygenic determinants in extremes of high-density lipoprotein cholesterol. J. Lipid Res. 2017;58: 2162-2170. DOI: 10.1194/jlr.M079822

45. Zanoni P., Khetarpal S.A., Larach D.B. et al. Rare Variant in Scavenger Receptor BI Raises HDL Cholesterol and Increases Risk of Coronary Heart Disease. Science. 2016;351(6278):1166-1171. DOI: 10.1126/science.aad3517

46. Hegele R.A., Ginsberg H.N., Chapman M.J., et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. European Atherosclerosis Society Consensus Panel. Lancet Diabetes Endocrinol. 2014;2(8):655-666. DOI: 10.1016/S2213-8587(13)70191-8

47. Moulin P., Dufour R., Averna M., et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis. 2018;275:265-272. DOI: 10.1016/j.atherosclerosis.2018.06.814

48. Iacocca M.A., Dron J.S., Hegele R.A. Progress in finding pathogenic DNA copy number variations in dyslipidemia. Curr Opin Lipidol. 2019;30(2):63-70. DOI: 10.1097/MOL.0000000000000581

49. Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. National Lipid Association Expert Panel on Familial Hypercholesterolemia. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5(3 Suppl):S9-17. DOI: 10.1016/j.jacl.2011.03.452

50. Priest J.R., Knowles J.W. Standards of Evidence and Mechanistic Inference in Autosomal Recessive Hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36(8):1465-1466. DOI: 10.1161/ATVBAHA.116.307714

51. Hegele R.A., Borén J., Ginsberg H.N., et al. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 2020;8(1):50-67. doi:10.1016/S2213-8587(19)30264-5


Review

For citations:


Ivanova O.N., Vasiliev P.A., Zakharova E.Yu. Molecular bases of primary monogenic dyslipidemia. Medical Genetics. 2020;19(12):4-17. (In Russ.)

Views: 606


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)