Medical aenetics 2024. Vol. 23. Issue 7

https://doi.org/10.25557/2073-7998.2024.07.24-32

# Спектр патогенных вариантов генов потенциальных мишеней таргетной терапии при PROS (спектр синдромов избыточного роста, ассоциированных с мутацией в гене PIK3CA)

Бычкова Е.В.<sup>1</sup>, Семенова Н.А.<sup>1</sup>, Сагоян Г.Б.<sup>2</sup>, Хагуров Р.А.<sup>3</sup>, Гусева Д.М.<sup>1</sup>, Володин И.В.<sup>1</sup>, Смирнов А.С.<sup>1,4</sup>, Стрельников В.В.<sup>1</sup>

- 1 ФГБНУ Медико-генетический научный центр имени академика Н.П. Бочкова 115522, г. Москва, ул. Москворечье, д.1
- 2 ФГБУ Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина Министерства здравоохранения Российской Федерации 115522, г. Москва, Каширское шоссе, д. 23
- 3 ГБУЗ города Москвы Детская городская клиническая больница им. Н.Ф. Филатова Департамента здравоохранения города Москвы 123242, г. Москва, ул. Садово-Кудринская, д. 15
- ФГАОУ ВО Российский национальный исследовательский медицинский университет имени Н.И. Пирогова Министерства здравоохранения Российской Федерации 117513, г. Москва, ул. Островитянова, д. 1

PROS (*PIK3CA*-related overgrowth spectrum — спектр синдромов избыточного роста, ассоциированных с мутацией гена *PIK3CA*) — гетерогенная группа заболеваний, характеризующихся разрастанием тканей, сосудистыми мальформациями и другими пороками развития. Причиной этих патологических состояний является соматическая активирующая мутация гена *PIK3CA*, возникающая в период эмбриогенеза. Широкое фенотипическое разнообразие заболевания создает трудности для клинической диагностики, поэтому молекулярно-генетическое тестирование имеет решающую роль в постановке диагноза и принятии решения о назначении ингибитора PI3Kα алпелисиба. В данной работе с использованием высокопроизводительного секвенирования панели генов-регуляторов клеточного роста у 29 из 80 пациентов с подозрением на PROS были выявлены варианты в гене *PIK3CA*, у 1 пациента был обнаружен патогенный вариант в гене *АКТ1*. Представлены клинические и молекулярно-генетические характеристики пациентов и обсуждены дальнейшие перспективы развития молекулярно-генетической диагностики PROS.

**Ключевые слова:** PROS, *PIK3CA*, парциальный гигантизм, сосудистые мальформации.

**Для цитирования:** Бычкова Е.В., Семенова Н.А., Сагоян Г.Б., Хагуров Р.А., Гусева Д.М., Володин И.В., Смирнов А.С., Стрельников В.В. Спектр патогенных вариантов генов потенциальных мишеней таргетной терапии при PROS (спектр синдромов избыточного роста, ассоциированных с мутацией в гене *PIK3CA*). *Медицинская генетика* 2024; 23(7): 24-32.

**Автор для корреспонденции:** Бычкова Екатерина Владимировна; **e-mail:** ktrn.bychkova@gmail.com **Финансирование.** Исследование проведено при финансовой поддержке ООО Новартис Фарма. **Конфликт интересов**. Авторы заявляют об отсутствии конфликта интересов.

Поступила: 15.07.2024

## Potentially actionable pathogenic genetic variants in PROS (PIK3CA-related overgrowth spectrum)

Bychkova E.V.<sup>1</sup>, Semenova N.A.<sup>1</sup>, Sagoyan G.B.<sup>2</sup>, Khagurov R.A.<sup>3</sup>, Guseva D.M.<sup>1</sup>, Volodin I.V.<sup>1</sup>, Smirnov A.S.<sup>1,4</sup>, Strelnikov V.V.<sup>1</sup>

- 1 Research Centre for Medical Genetics1 Moskvorechie st., Moscow, 115522, Russian Federation
- 2 National Medical Research Center of Oncology named after N.N. Blokhin of the Ministry of Health of the Russian Federation 23 Kashirskoe shosse, Moscow, 115522, Russian Federation
- 3 Children's City Clinical Hospital named after N.F. Filatov of Moscow City Health Department 15 Sadovaya-Kudrinskaya sSt., Moscow, 123242, Russian Federation
- 4 N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
  1 Ostrovityanova st., Moscow, 117513, Russian Federation

PROS (*PIK3CA*-related overgrowth spectrum) is a heterogeneous group of diseases characterized by tissue overgrowth, vascular malformations, and other malformations. The cause of these pathologic conditions is a somatic activating *PIK3CA* mutation that occurs during embryogenesis. The wide phenotypic diversity of the disease complicates clinical diagnosis, so molecular genetic testing has a crucial role in the diagnosis and the decision to prescribe the PI3Kα inhibitor alpelisib. In this study, among 80 patients with suspected PROS, a variant in *PIK3CA* was identified in 29 patients using high-throughput sequencing of a panel of cell growth regulator genes,

their clinical and molecular genetic characterization is presented, and further prospects for the development of molecular genetic diagnosis of PROS are discussed.

**Keywords:** PROS, *PIK3CA*, segmental overgrowth, vascular malformations.

For citation: Bychkova E.V., Semenova N.A., Sagoyan G.B., Khagurov R.A., Guseva D.M., Volodin I.V., Smirnov A.S., Strelnikov V.V. Potentially actionable pathogenic genetic variants in PROS (*PlK3CA*-related overgrowth spectrum). *Medical genetics* [*Medicinskaya genetika*]. 2024; 23(7): 24-32. (In Russian).

**Corresponding author:** Ekaterina V. Bychkova; **e-mail:** ktrn.bychkova@gmail.com **Funding.** The study was conducted with the financial support of Novartis Pharma.

Conflict of interest. The authors declare no conflict of interest.

Accepted: 15.07.2024

#### Введение

#### Этиология и namoreнes PROS

PROS (*PIK3CA*-related overgrowth spectrum — спектр синдромов избыточного роста, ассоциированных с мутацией гена *PIK3CA*) является собирательным термином для ряда состояний, проявляющихся парциальным избыточным ростом, обусловленным соматической постзиготической мутацией в гене *PIK3CA*. PROS объединяет около 20 патологических состояний от изолированных поражений до синдромальных форм. Это обусловлено сочетанием таких факторов, как тип, локализация и время возникновения мутации [1].

Ген *PIK3CA* (3q26.32) кодирует каталитическую субъединицу р110α фосфатидил-инозитол-3-киназы (PI3K) класса I. В норме активность p110α поддерживается на низком уровне путем взаимодействия с регуляторной субъединицей р85, однако при активирующих вариантах в гене *PIK3CA* активность фермента возрастает и приводит к активации одного из ключевых сигнальных путей клеточного роста и пролиферации PI3K/AKT/mTOR. Ген PIK3CA является наиболее часто мутирующим протоонкогеном при различных видах рака, в частности активирующие мутации распространены при раке молочной железы, эндометрия, мочевого пузыря, колоректальной карциноме и плоскоклеточной карциноме головы и шеи. Среди вариантов в РІКЗСА преобладают миссенс-варианты, наиболее частыми из которых являются p.Glu542Lys, p.Glu545Lys и p.His1047Arg. Они оказывают наиболее сильное влияние на активацию фермента и превалируют при *PIK3CA*-ассоциированном раке [2]. При PROS встречаются как варианты горячих точек, так и другие варианты, представленные во всех доменах белка. Некоторые синдромальные формы, а также большинство локализованных поражений зачастую вызваны мутациями горячих точек, однако у пациентов с поражением головного мозга превалируют редкие варианты вне горячих точек [3,4]. Необходимо отметить, что смещение в сторону частых патогенных вариантов *PIK3CA* может наблюдаться в связи с недостаточным обследованием пациентов с мягким фенотипом, а также использованием методов диагностики, нацеленных на выявление конкретных вариантов. Следует подчеркнуть, что, несмотря на высокий вклад патогенных вариантов, возникающих при раке, у пациентов с PROS наблюдается низкий риск возникновения онкологических заболеваний [5].

При PROS поражаются ткани мезодермального и нейроэктодермального происхождения (эндотелий, жировая, нервная, мышечная и костная). Наиболее сильно подвержены изменениям пластичные ткани (жировая и эндотелий), которые зависят от микроокружения и активно пролиферируют в ответ на активацию PI3K, поэтому наиболее частыми фенотипическими чертами пациентов с PROS являются сосудистые мальформации и избыточный рост жировой ткани. При *PIK3CA*-ассоциированных раках, напротив, поражаются преимущественно производные мезодермы и эктодермы [2].

Для PROS характерно явление соматического мозаицизма, при котором мутационное событие происходит на ранних этапах эмбрионального развития (20-56 день), при этом чем раньше возникает мутация, тем более обширное поражение будет наблюдаться. Так, при синдромах с поражением головного мозга, мутация возникает на более ранних этапах, в связи с чем у таких пациентов редки сильные активирующие варианты горячих точек [3,4]. Описаны также случаи конститутивных вариантов вне горячих точек при синдромах с поражением головного мозга [6,7].

#### Клиническая гетерогенность PROS

Клинически PROS проявляется избыточным ростом костной, жировой, мышечной и нервной ткани преимущественно в конечностях, головном мозге, на лице и туловище. Односторонний процесс встречается значительно чаще, чем двусторонний. Среди пациентов с PROS распространены сосудистые мальформации и кожные аномалии. Эти проявления могут не со-

провождаться разрастанием тканей, в связи с чем был предложен термин «*PIK3CA*-связанные нарушения», объединяющий синдромы избыточного роста, сосудистые мальформации и несосудистые проявления.

К синдромам, сопровождающимся избыточным ростом, относят CLOVES (врожденное липоматозное асимметричное разрастание туловища с лимфатическими, капиллярными, венозными и комбинированными сосудистыми мальформациями, эпидермальными невусами, сколиозом / скелетными и спинальными аномалиями), CLAPO (капиллярная мальформация нижней губы, лимфатическая мальформация с преобладанием на лице и шее, асимметрия и частичный или генерализованный избыточный рост), диффузную капиллярную мальформацию с избыточным ростом, фиброадипозную гиперплазию, гемигиперплазию-множественный липоматоз, фиброадипозную сосудитую аномалию, диспластическую мегалэнцефалию, гемимегалэнцефалию, лицевой инфильтрурующий липоматоз, липоматоз нерва, макродактилию, мышечную гемигиперплазию, МСАР (мегалэецефалия-капиллярная мальформация), синдром Клиппеля-Треноне.

У пациентов с соматической мутацией в гене *PIK3CA* встречаются изолированные простые (капиллярные, венозные и лимфатические) и комбинированные (лимфатическо-венозные, капиллярно-лимфатические и капиллярно-лимфатическо-венозные) сосудистые мальформации, а также генерализованная лимфатическая аномалия. В ряде случаев сосудистые мальформации могут не причинять существенного вреда для жизни, однако они могут сопровождаться болевыми ощущениями, эстетическими дефектами, разрушением костной ткани и различными нарушениями функций органов.

Несосудистые *PIK3CA*-ассоциированные поражения включают кожные аномалии (доброкачественный лихеноидный кератоз, себорейный кератоз, эпидермальные невусы) и фокальную кортикальную дисплазию. У небольшого числа пациентов наблюдаются эндокринные нарушения (гипогликемия, гипотиреоз, дефицит гормона роста). У пациентов с поражением мозга наблюдаются неврологические симптомы [1,8].

#### Особенности диагностики PROS

Согласно Консенсусу по диагностике и лечению PROS для постановки диагноза требуется наличие мутации в гене *PIK3CA*, врожденное или возникшее в раннем детстве проявление заболевания, 2 и более признаков категории A (разрастание жировой, мышечной, нервной или костной ткани, сосудистые мальфор-

мации, эпидермальный невус) и/или хотя бы 1 признак категории В (крупные изолированные лимфатические мальформации, изолированная макродактилия или разрастание стоп, кистей, конечностей, разрастание жировой ткани на туловище, гемимегалэнцефалия (двусторонняя), диспластическая мегалэнцефалия, фокальная кортикальная дисплазия, эпидермальный невус, себорейный кератоз, доброкачественный лихеноидный кератоз). Если патогенный вариант в гене PIK3CA не обнаружен, решение о постановке диагноза принимается междисциплинарной комиссией [1]. Необходимо отметить, что некоторые из нарушений, объединенных термином PROS, могут быть обусловлены патогенными вариантами в других генах сигнальных путей, ответственных за регуляцию клеточного роста, поэтому молекулярно-генетическая диагностика имеет важное значение в дифференциальной диагностике данных нарушений и постановке верного диагноза. PROS следует дифференцировать с синдромами Протея, МРРН (мегалэнцефалия, постаксиальная полидактилия, полимикрогирия и гидроцефалия), гипоинсулинемической гипогликемии и гемигипертрофии тела, МТОЯ-ассоциированной гемимегалэнцефалией и фокальной кортикальной дисплазией типа II, *PTEN*-ассоциированным синдромом гамартомных опухолей, синдромом Беквита-Видемана, сосудистыми мальформациями при мозаичных RAS-патиях, синдромом Штурге-Вебера, синдромом капиллярной и артериовенозной мальформации [9, 10].

При молекулярно-генетической диагностике PROS необходимо учитывать мозаичное распределение мутации в организме и низкий показатель VAF (variant allele frequency — частота альтернативного аллеля), который зачастую составляет менее 10%. Материалом исследования должны быть образцы ткани патологического образования: свежий/быстрозамороженный биоптат или зафиксированный формалином и заключенный в парафиновый блок (formalin fixed paraffin embedded, FFPE) образец пораженной ткани. В некоторых случаях может потребоваться исследование нескольких образцов. Оптимально использование биоптата кожи, расположенной над очагом разрастания [1,3,11]. При работе с FFPE важно учитывать наличие фрагментации ДНК и артефактов последовательности (замены оснований C:G>T:A), возникающих в результате фиксации формалином. В связи с этим необходимо использовать протоколы выделения ДНК, включающие этап обработки урацил-ДНК гликозилазой (УДГ) ферментом, ликвидирующим артефакты фиксации [12]. Артефакты последовательности ДНК, вызван-

ные формалиновой фиксацией, и высокая степень деградации ДНК, приводящая к снижению анализируемых геном-эквивалентов, не позволяют исключить ложноположительные результаты анализа образцов тканей из FFPE. Фильтрация ложноположительных результатов и точная количественная оценка низкопредставленных вариантов (VAF < 1-2%) может быть осуществлена путём использования при секвенировании уникальных молекулярных идентификаторов (UMI — Unique Molecular Identifiers), служащих уникальной меткой каждого фрагмента ДНК, что позволяет нивелировать артефакты амплификации и секвенирования [13].

Также в качестве материала для диагностики допустимо использование культур фибробластов, полученных из биоптатов кожи, однако в таком случае возможно получение отрицательного результата в связи с негативным отбором патогенного клона, поэтому такой результат стоит интерпретировать с осторожностью [11]. У пациентов с поражением мозга допускается анализ ДНК, выделенной из лейкоцитов периферической венозной крови, слюны и буккального эпителия [3].

Предпочтительным методом диагностики PROS является высокопроизводительное секвенирование всей кодирующей последовательности гена РІКЗСА с глубоким покрытием. Это обусловлено, во-первых, распределением вариантов, в том числе не описанных ранее, в пределах всей кодирующей последовательности гена, что делает методы анализа частых вариантов недостаточно информативными; во-вторых, высокой чувствительностью метода, позволяющей идентифицировать варианты с низким уровнем VAF. Наличие функциональных вариантов в некодирующих областях генов не предполагается, поскольку причиной PROS являются активирующие варианты усиления функции. Необходимая минимальная глубина покрытия составляет не менее 350х, средняя — 500х для поиска вариантов с VAF = 5%, однако предпочтительно увеличение этого показателя для повышения чувствительности метода. При ручной проверке выровненных прочтений в позициях горячих точек методом глубокого высокопроизводительного секвенирования панели генов возможно выявление вариантов с VAF ≥ 1%, однако для вариантов с VAF ≤ 2% рекомендовано подтверждающее тестирование других пораженных тканей [14]. Секвенирование полного экзома или генома не является информативным для диагностики PROS в связи с низким показателем глубины покрытия [3,11,15,16]. Альтернативным методом может быть цифровая капельная ПЦР (цкПЦР) частых вариантов,

имеющая высокую чувствительность (не менее 0,1%), однако данный метод не позволяет обнаруживать редкие варианты, в связи с чем не может быть универсальным для диагностики PROS [17].

Верификация результатов высокопроизводительного секвенирования может быть осуществлена секвенированием по Сэнгеру для вариантов с VAF  $\geqslant$  20% или цкПЦР для мозаичных мутаций с VAF  $\leqslant$  5%. Особенно актуальной является верификация вариантов, расположенных в экзонах 10-14 в связи с наличием псевдогена с >95% гомологией [18].

#### Tepanuя PROS

Симптоматическое лечение PROS включает хирургическую резекцию разрастания тканей, лазерную терапию, склеротерапию, эмболизацию сосудистых мальформаций и методы аспирации из гипертрофированных частей тела. После хирургической резекции патологического образования возможно возобновление его роста, что может быть объяснено действием факторов, способствующих регенерации, на чувствительные к микроокружению ткани. Для системного лечения в настоящее время рекомендован ингибитор PI3К $\alpha$  алпелисиб, назначение которого требует выявления у пациента варианта в гене *PIK3CA*. В случаях, когда алпелисиб назначить невозможно, рекомендовано назначение ингибитора mTOR сиролимуса [19,20].

#### Методы

80 пациентов (44 мужского и 36 женского пола) были направлены в лабораторию эпигенетики ФГБНУ МГНЦ для проведения молекулярно-генетической диагностики. Направляющие врачи предоставили показания к тестированию, а также дополнительную клиническую информацию об избыточном росте и/или наличии сосудистой мальформации и/или других симптомах PROS. Возраст пациентов составил от 1 месяца до 18 лет. Письменное информированное добровольное согласие на участие в научном исследовании было получено от всех пациентов или их законных представителей.

Материалом для молекулярно-генетического тестирования послужила геномная ДНК, выделенная из материала биопсии пораженного участка (66 образцов от 62 пациентов), парафиновых блоков (16 образцов) и осадка культуры фибробластов (2 образца). Депарафинизация срезов блоков была осуществлена методом обработки ксилолом. ДНК была выделена методом фенол-хлороформной экстракции, количество

ДНК было определено с использованием флуориметра Qubit 4.0. Протокол выделения ДНК из парафиновых блоков включал инкубацию с урацил-ДНК гликозилазой.

Анализ вариантов нуклеотидной последовательности в генах сигнального пути PI3K/AKT/mTOR осуществляли методом высокопроизводительного параллельного секвенирования панели праймеров, обеспечивающих покрытие кодирующих экзонов и прилегающих к ним участков интронов генов PIK3CA, MTOR, EGFR, VEGFA, MAP2K1, MAP2K2, AKT1, IGF1R, KIT, ERBB2, ERBB4, PAK1, PTK2. Coстав панели генов был разработан на основании участия кодируемых белков в регуляции клеточного цикла и существования молекул-ингибиторов, имеющих потенциальное терапевтическое значение. Для создания библиотек фрагментов ДНК был использован базовый модуль Prep&Seq U-target DNA (Parseq Lab, Россия). Секвенирование образцов было выполнено на секвенаторе Ion S5 (ThermoFisher) с минимальной средней глубиной покрытия 1000х. Результаты секвенирования были обработаны с использованием программного обеспечения Torrent Suite и референсного генома GRCh37/hg19. Коллинг осуществлялся с учетом распространенности вариантов с низким уровнем VAF при PROS. Выявленные варианты обозначали в соответствии с номенклатурой HGVS [21].

#### Результаты

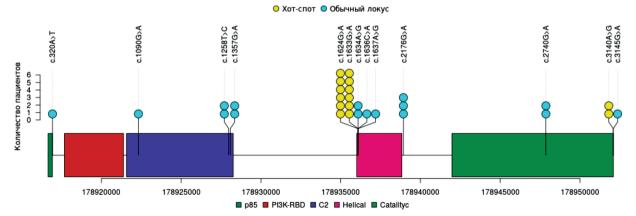
Молекулярно-генетическая диагностика

Молекулярно-генетическая диагностика была проведена 80 пациентам с подозрением на PROS. По результатам тестирования у 28 пациентов был обнаружен патогенный/вероятно патогенный вариант в гене *PIK3CA* (NM\_006218.4), у 1 пациента был обнаружен вариант *PIK3CA*, классифицированный как вариант неизвестного клинического значения и у 1 пациента был обнаружен патогенный вариант в гене *AKT1* (NM\_001382430.1) (таблица). Все выявленные варианты оказались миссенс-вариантами.

Из 29 пациентов с вариантом в гене *PIK3CA* менее чем в половине случаев (48,3%) были выявлены варианты горячих точек: c.1624G>A;p.(Glu542Lys) у 6 пациентов, c.1633G>A;p.(Glu545Lys) у 6 пациентов и р.Ніs1047Arg;p.(His1047Arg) у 2 пациентов. У 14 пациентов были выявлены варианты, ранее описанные при PROS: c.1090G>A;p.(Gly364Arg), c.1258T>C; p.(Cys420Arg), c.1357G>A;p.(Glu453Lys), c.1634A>G;p.

(Glu545Gly), c.1636C>A;p.(Gln546Lys), c.1637A>G;p. (Gln546Arg), c.2176G>A;p.(Glu726Lys), c.2740G>A; p.(Glu914Arg), c.3145G>A;p.(Gly1049Ser).

Среди проанализированных образцов подавляющее большинство составили биоптаты, поэтому результаты были интерпретированы в единой когорте с другими видами материала для анализа. Обнаруженные варианты располагаются в пределах C2, спирального, каталитического функциональных доменов  $p110\alpha$  (рисунок). Вариант c.320A>T; p.(Asn107Ile) ранее не был ассоциирован с PROS и был классифицирован как вариант неизвестного клинического значения. Это подчеркивает необходимость анализа всей кодирующей последовательности гена PIK3CA для диагностики PROS.


Средний уровень VAF вариантов *PIK3CA*, составил 14%, причем у 15 пациентов (51,7%) VAF не превышала 10%, что доказывает важность использования чувствительных методов диагностики. У четырех пациентов был проведен анализ биоптатов двух разных патологических образований. У пациента №20 был выявлен вариант нуклеотидной последовательности в гене *PIK3CA* с.1634A>G;p.(Glu545Gly) в материале сосудистой мальформации (VAF=12%) и липомы (VAF=5%). У остальных пациентов, от которых было доступно несколько биоптатов, варианты не были выявлены ни в одном из них.

#### Клиническая характеристика

У 20 из 28 пациентов с патогенным или вероятно патогенным вариантом в гене РІКЗСА наблюдалось сочетание изолированного или распространенного избыточного роста и сосудистых мальформаций (капиллярных, венозных, лимфатических, лимфатическо-венозных и капиллярно-лимфатическо-венозных). 5 пациентов имели разрастание тканей без поражения сосудов, а у 3 пациентов наблюдались только сосудистые мальформации. Избыточный рост мозга был диагностирован у 2 пациентов, поражения кожи (эпидермальные невусы, участки кератоза) — у 5 пациентов. Тяжесть течения заболевания была определена на основании наличия болевого синдрома и нарушения способности к самостоятельному передвижению. У 16 пациентов наблюдались постоянные или периодические боли пораженных частей тела, среди них 6 пациентов имели трудности с самостоятельным передвижением. У 2 пациентов было невозможно определить тяжесть течения ввиду младенческого возраста. Корреляции между VAF патогенного/вероятно па-

Генетические варианты, выявленные у пациентов с направительным диагнозом PROS Genetic variants identified in patients referred for PROS diagnostics

| № пациента | Ген    | Вариант в кДНК | Эффект на белок | VAF    |
|------------|--------|----------------|-----------------|--------|
| 1          | PIK3CA | c.1090G>A      | p.Gly364Arg     | 5%     |
| 2          | PIK3CA | c.1624G>A      | p.Glu542Lys     | 8%     |
| 3          | PIK3CA | c.320A>T       | p.Asn107Ile     | 25%    |
| 4          | PIK3CA | c.1258T>C      | p.Cys420Arg     | 13%    |
| 9          | PIK3CA | c.1357G>A      | p.Glu453Lys     | 9%     |
| 13         | PIK3CA | c.1624G>A      | p.Glu542Lys     | 17%    |
| 14         | PIK3CA | c.2176G>A      | p.Glu726Lys     | 10%    |
| 16         | PIK3CA | c.1624G>A      | p.Glu542Lys     | 29%    |
| 17         | PIK3CA | c.3140A>G      | p.His1047Arg    | 15%    |
| 20         | PIK3CA | c.1634A>G      | p.Glu545Gly     | 12%/5% |
| 26         | PIK3CA | c.1624G>A      | p.Glu542Lys     | 6%     |
| 27         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 2%     |
| 30         | PIK3CA | c.1636C>A      | p.Gln546Lys     | 7%     |
| 32         | PIK3CA | c.1637A>G      | p.Gln546Arg     | 4%     |
| 34         | PIK3CA | c.1357G>A      | p.Glu453Lys     | 28%    |
| 36         | PIK3CA | c.1258T>C      | p.Cys420Arg     | 31%    |
| 41         | PIK3CA | c.2740G>A      | p.Gly914Arg     | 4%     |
| 43         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 5%     |
| 45         | AKT1   | c.49G>A        | p.Glu17Lys      | 12%    |
| 52         | PIK3CA | c.2176G>A      | p.Glu726Lys     | 28%    |
| 56         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 6%     |
| 59         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 2%     |
| 60         | PIK3CA | c.3140A>G      | p.His1047Arg    | 5%     |
| 61         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 26%    |
| 61         | PIK3CA | c.3145G>A      | p.Gly1049Ser    | 9%     |
| 63         | PIK3CA | c.1624G>A      | p.Glu542Lys     | 34%    |
| 69         | PIK3CA | c.1633G>A      | p.Glu545Lys     | 7%     |
| 74         | PIK3CA | c.2740G>A      | p.Gly914Arg     | 31%    |
| 76         | PIK3CA | c.2176G>A      | p.Glu726Lys     | 21%    |
| 79         | PIK3CA | c.1624G>A      | p.Glu542Lys     | 11%    |



Генетические варианты, выявленные у пациентов с направительным диагнозом PROS Genetic variants identified in patients referred for PROS diagnostics

Medical genetics 2024. Vol. 23. Issue 7

тогенного варианта и тяжестью клинической картины выявлено не было.

У пациента с выявленным вариантом неопределенного клинического значения с.320A>T;р.(Asn107Ile) наблюдались асимметрия туловища и лица, отмеченная с рождения, несколько сосудистых мальформаций на коже и болевой синдром, что соотносится с клинической картиной PROS.

### Случаи с неидентифицированными патогенными вариантами

По результатам молекулярно-генетического анализа у 50 пациентов не было обнаружено вариантов нуклеотидной последовательности, имеющих отношение к заболеванию. Это может быть объяснено альтернативной этиологией наблюдаемого фенотипа. При создании панели праймеров для диагностики PROS мы руководствовались гипотезой о том, что причиной избыточного роста при PROS могут являться мутации генов, кодирующих белки-регуляторы клеточного цикла, из которых выбрали те, для которых существуют молекулы-ингибиторы, имеющие потенциальное терапевтическое значение, однако патогенных вариантов в данных генах выявлено не было, за исключением варианта нуклеотидной последовательности гена AKT1 c.49G>A: p.(Glu17Lys), описанного как патогенный при синдроме Протея. Дизайн используемой панели праймеров обеспечивает полное покрытие кодирующих последовательностей генов, что исключает получение ложноотрицательных результатов. PROS характеризуется гетерогенным фенотипическим спектром, и многие из проявлений заболевания могут быть ассоциированы с нарушениями в других генах. Так, причиной избыточного роста, наблюдаемого при PROS, могут быть патогенные/вероятно патогенные варианты в генах AKT1, AKT2, AKT3, MTOR, PTEN; сосудистые мальформации и кожные аномалии могут являться результатом мутаций генов *TEK*, *GNAQ*, *GNA11*, GNA14, KRAS, NRAS, HRAS, BRAF, RASA1, MAP2K1, *MAP3K3*, *GLMN*. Данные гены могут быть включены в панель для комплексной дифференциальной диагностики синдромов сегментарного избыточного роста и сосудистых мальформаций.

Кроме того, отрицательные результаты молекулярно-генетического исследования могут быть следствием анализа тканей, не пораженных мутацией PIK3CA, или низкой представленности альтернативного аллеля. При биопсии возможно попадание

в образец нормальных тканей. Также существуют предположения, что активирующие варианты гена PIK3CA могут изменять микроокружение не пораженных мутацией прилежащих клеток посредством паракринных факторов, стимулируя их пролиферацию и выживание [22]. При поиске высокомозаичных вариантов с VAF  $\leq$  0,01 специфичность высокопроизводительного секвенирования значительно снижается из-за наличия артефактов амплификации и секвенирования, поэтому для их анализа необходим более чувствительный метод цкПЦР. Варианты с VAF  $\leq$  0,01 в данном исследовании рассматривались как ошибки секвенирования.

#### Заключение

Широкая клиническая и молекулярная гетерогенность PROS представляет трудности для постановки диагноза синдромов этого спектра. Основными фенотипическими признаками PROS являются избыточный рост и сосудистые мальформации, которые могут наблюдаться при ряде синдромов, не ассоциированных с патогенными вариантами в гене *PIK3CA*. В связи с этим молекулярно-генетическая диагностика необходима для определения точного диагноза и тактики ведения пациента. Кроме того, для назначения существующей таргетной терапии PROS необходима идентификация каузативного варианта в гене *PIK3CA*.

В данной работе 80 пациентам с направительным диагнозом PROS был проведен молекулярно-генетический анализ методом высокопроизводительного секвенирования панели генов, регулирующих рост и пролиферацию клеток человека и являющихся потенциальными терапевтическими мишенями. В 37,5% случаев были обнаружены варианты нуклеотидной последовательности, имеющие возможное отношение к фенотипу. У 28 пациентов выявлены патогенные или вероятно патогенные варианты в гене РІКЗСА, у 1 пациента выявлен вариант неясного клинического значения в гене РІКЗСА и у 1 пациента выявлен патогенный вариант в гене AKT1. В нашей выборке варианты горячих точек в гене РІКЗСА были выявлены почти в половине случаев, что согласуется с систематическим обзором A. Mussa с соавт., включающим 1007 пациентов с PROS [16]. Однако в исследованиях Kuentz с соавт. [3] и Mirzaa с соавт. [4] варианты горячих точек были обнаружены менее, чем у 30% пациентов, что обусловлено высокой долей пациентов с поражением головного мозга, среди которых распространены менее активирующие варианты. Важно подчеркнуть необходимость секвенирования

всей кодирующей последовательности гена *PIK3CA* для диагностики PROS, поскольку варианты, в особенности при формах с избыточным ростом головного мозга, не ограничиваются горячими точками.

Отсутствие выявленных вариантов гена РІКЗСА может объясняться альтернативной этиологией наблюдаемого фенотипа, анализом ДНК из тканей, не затронутых мутацией и низкой представленностью альтернативного аллеля за пределами порога чувствительности используемого метода диагностики. Наиболее полная характеристика спектра патогенных вариантов при синдромах избыточного роста позволит установить возможные корреляции между генотипом и фенотипом, а также оценить эффективность терапии у носителей конкретных патогенных вариантов. Высокопроизводительное секвенирование панели праймеров, обеспечивающих покрытие кодирующей последовательности генов, являющихся причинами синдромов избыточного роста и сосудистых мальформаций, может стать эффективным методом дифференциальной диагностики данных патологических состояний.

#### Литература

- Keppler-Noreuil K.M., Rios J.J., Parker V.E., et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287-295. doi:10.1002/ajmg.a.36836
- Thorpe L.M., Yuzugullu H., Zhao J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7-24. doi:10.1038/nrc3860
- Kuentz P., St-Onge J., Duffourd Y., et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 2017;19(9):989-997. doi:10.1038/gim.2016.220
- Mirzaa G., Timms A.E., Conti V., et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623. doi:10.1172/jci.insight.87623
- Faivre L., Crépin J.C., Réda M., et al. Low risk of embryonic and other cancers in PIK3CA-related overgrowth spectrum: Impact on screening recommendations. Clin Genet. 2023;104(5):554-563. doi:10.1111/cge.14410
- Cooley Coleman J.A., Gass J.M., Srikanth S., et al. Clinical and functional characterization of germline PIK3CA variants in patients with PIK3CA-related overgrowth spectrum disorders. Hum Mol Genet. 2023;32(9):1457-1465. doi:10.1093/hmg/ddac296
- De Graer C., Marangoni M., Romnée S., et al. Novel features of PIK3CA-Related Overgrowth Spectrum: Lesson from an aborted fetus presenting a de novo constitutional PIK3CA mutation. Eur J Med Genet. 2020;63(4):103775. doi:10.1016/j.ejmg.2019.103775
- Canaud G., Hammill A.M., Adams D., et al. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. Published 2021 Jul 8. doi:10.1186/s13023-021-01929-8

- Queisser A., Seront E., Boon L.M., Vikkula M. Genetic Basis and Therapies for Vascular Anomalies. Circ Res. 2021;129(1):155-173. doi:10.1161/CIRCRESAHA.121.318145
- Nathan N., Keppler-Noreuil K.M., Biesecker L.G., et al. Mosaic Disorders of the PI3K/PTEN/AKT/TSC/mTORC1 Signaling Pathway. Dermatol Clin. 2017;35(1):51-60. doi:10.1016/j.det.2016.07.001
- Gazzin A., Leoni C., Viscogliosi G., et al. Work-Up and Treatment Strategies for Individuals with PIK3CA-Related Disorders: A Consensus of Experts from the Scientific Committee of the Italian Macrodactyly and PROS Association. Genes (Basel). 2023;14(12):2134. doi:10.3390/genes14122134
- Do H., Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget. 2012;3(5):546-558. doi:10.18632/oncotarget.503
- Sater V., Viailly P.J., Lecroq T., et al. UMI-Gen: A UMI-based read simulator for variant calling evaluation in paired-end sequencing NGS libraries. Comput Struct Biotechnol J. 2020;18:2270-2280. Published 2020 Aug 27. doi:10.1016/j.csbj.2020.08.011
- McNulty S., Evenson M., Corliss M., et al. Diagnostic utility of next-generation sequencing for disorders of somatic mosaicism: a five-year cumulative cohort. Am J Hum Genet. 2019;105(4):734-746. doi:10.1016/j.ajhg.2019.09.002
- 15. Hucthagowder V., Shenoy A., Corliss M., et al. Utility of clinical high-depth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum. Clin Genet. 2017;91(1):79-85. doi:10.1111/cge.12819
- Mussa A., Leoni C., Iacoviello M., et al. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet. 2023;60(2):163-173. doi:10.1136/jmedgenet-2021-108093
- Piacitelli A.M., Jensen D.M., Brandling-Bennett H., et al. Characterization of a severe case of PIK3CA-related overgrowth at autopsy by droplet digital polymerase chain reaction and report of PIK3CA sequencing in 22 patients. Am J Med Genet A. 2018;176(11):2301-2308. doi:10.1002/ajmg.a.40487
- Baker C.L., Vaughn C.P., Samowitz W.S. A PIK3CA pyrosequencing-based assay that excludes pseudogene interference. J Mol Diagn. 2012;14(1):56-60. doi:10.1016/j.jmoldx.2011.08.004
- Douzgou S., Rawson M., Baselga E., et al. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32-47. doi:10.1111/ cge.14027
- Сагоян Г.Б., Клецкая И.С., Имянитов Е.Н. и др. Спектр синдромов избыточного роста, связанных с мутацией РІКЗСА. Обзор литературы. Российский журнал детской гематологии и онкологии. 2022;9(1):29-44. https://doi.org/10.21682/2311-1267-2022-9-1-29-44
- 21. https://hgvs-nomenclature.org
- Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856-870. doi:10.1016/j.molmed.2018.08.003

#### References

 Keppler-Noreuil K.M., Rios J.J., Parker V.E., et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287-295. doi:10.1002/ajmg.a.36836

#### **ORIGINAL ARTICLES**

Medical genetics 2024. Vol. 23. Issue 7

- Thorpe L.M., Yuzugullu H., Zhao J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7-24. doi:10.1038/nrc3860
- Kuentz P., St-Onge J., Duffourd Y., et al. Molecular diagnosis of PIK-3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 2017;19(9):989-997. doi:10.1038/gim.2016.220
- Mirzaa G., Timms A.E., Conti V., et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623. doi:10.1172/jci.insight.87623
- Faivre L., Crépin J.C., Réda M., et al. Low risk of embryonic and other cancers in PIK3CA-related overgrowth spectrum: Impact on screening recommendations. Clin Genet. 2023;104(5):554-563. doi:10.1111/cge.14410
- Cooley Coleman J.A., Gass J.M., Srikanth S., et al. Clinical and functional characterization of germline PIK3CA variants in patients with PIK3CA-related overgrowth spectrum disorders. Hum Mol Genet. 2023;32(9):1457-1465. doi:10.1093/hmg/ddac296
- De Graer C., Marangoni M., Romnée S., et al. Novel features of PIK-3CA-Related Overgrowth Spectrum: Lesson from an aborted fetus presenting a de novo constitutional PIK3CA mutation. Eur J Med Genet. 2020;63(4):103775. doi:10.1016/j.ejmg.2019.103775
- Canaud G., Hammill A.M., Adams D., et al. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. Published 2021 Jul 8. doi:10.1186/s13023-021-01929-8
- Queisser A., Seront E., Boon L.M., Vikkula M. Genetic Basis and Therapies for Vascular Anomalies. Circ Res. 2021;129(1):155-173. doi:10.1161/CIRCRESAHA.121.318145
- Nathan N., Keppler-Noreuil K.M., Biesecker L.G., et al. Mosaic Disorders of the PI3K/PTEN/AKT/TSC/mTORC1 Signaling Pathway. Dermatol Clin. 2017;35(1):51-60. doi:10.1016/j. det.2016.07.001
- Gazzin A., Leoni C., Viscogliosi G., et al. Work-Up and Treatment Strategies for Individuals with PIK3CA-Related Disorders: A Consensus of Experts from the Scientific Committee of the Italian Macrodactyly and PROS Association. Genes (Basel). 2023;14(12):2134. doi:10.3390/genes14122134
- 12. Do H., Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with

- uracil- DNA glycosylase. Oncotarget. 2012;3(5):546-558. doi:10.18632/oncotarget.503
- Sater V., Viailly P.J., Lecroq T., et al. UMI-Gen: A UMI-based read simulator for variant calling evaluation in paired-end sequencing NGS libraries. Comput Struct Biotechnol J. 2020;18:2270-2280. Published 2020 Aug 27. doi:10.1016/j.csbj.2020.08.011
- McNulty S., Evenson M., Corliss M., et al. Diagnostic utility of next-generation sequencing for disorders of somatic mosaicism: a fiveyear cumulative cohort. Am J Hum Genet. 2019;105(4):734-746. doi:10.1016/j.ajhg.2019.09.002
- Hucthagowder V., Shenoy A., Corliss M., et al. Utility of clinical highdepth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum. Clin Genet. 2017;91(1):79-85. doi:10.1111/cge.12819
- Mussa A., Leoni C., Iacoviello M., et al. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet. 2023;60(2):163-173. doi:10.1136/jmedgenet-2021-108093
- Piacitelli A.M., Jensen D.M., Brandling-Bennett H., et al. Characterization of a severe case of PIK3CA-related overgrowth at autopsy by droplet digital polymerase chain reaction and report of PIK3CA sequencing in 22 patients. Am J Med Genet A. 2018;176(11):2301-2308. doi:10.1002/ajmg.a.40487
- Baker C.L., Vaughn C.P., Samowitz W.S. A PIK3CA pyrosequencing-based assay that excludes pseudogene interference. J Mol Diagn. 2012;14(1):56-60. doi:10.1016/j.jmoldx.2011.08.004
- Douzgou S., Rawson M., Baselga E., et al. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32-47. doi:10.1111/cge.14027
- Sagoyan G.B., Kletskaya I.S., Imyanitov Ye.N., et al. Spektr sindromov izbytochnogo rosta, svyazannykh s mutatsiyey PIK3CA. Obzor literatury [A spectrum of overgrowth syndromes associated with the PIK3CA mutation. Literature review]. Rossiyskiy zhurnal detskoy gematologii i onkologii [Russian Journal of Pediatric Hematology and Oncology]. 2022;9(1):29-44. (In Russ.) https://doi.org/10.21682/2311-1267-2022-9-1-29-44
- 21. https://hgvs-nomenclature.org
- Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856-870. doi:10.1016/j.molmed.2018.08.003