Связь локуса 17q23.1 с клинически выраженным атеросклерозом сонных артерий

Гончарова И.А.¹, Королева Ю.А.¹, Слепцов А.А.¹, Бабушкина Н.П.¹, Кузнецов М.С.², Козлов Б.Н.², Назаренко М.С.¹

- Научно-исследовательский институт медицинской генетики,
 Томский национальный исследовательский медицинский центр Российской академии наук 634050, г. Томск, ул. Набережная р. Ушайки, д. 10.
- 2 Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук 634012, г. Томск, ул. Киевская, д. 111a.

Проведен анализ ассоциаций rs8078424 (chr17:59873104) с риском развития клинически выраженного атеросклероза сонных артерий и патогенетически значимыми для развития данной патологии количественными признаками, а также оценена связь данного генетического варианта с экспрессией гена МІЯ21 в лейкоцитах периферической крови пациентов. В группу обследования включены пациенты с клинически выраженным атеросклерозом сонных артерий (стеноз при ультразвуковом исследовании более 80%; n=104). В качестве контроля использованы популяционная выборка жителей г. Томска (n=161) и группа, состоящая из относительно здоровых индивидов, которые имели начальные стадии атеросклероза сонных артерий, но без гемодинамически значимых изменений (стеноз не более 24%; n=84). Генотипирование rs8078424 выполняли методом MALDI-TOF масс-спектрометрии на приборе Sequenom MassARRAY $^{\circ}$ (США). Уровень экспрессии гена MIR21 в лейкоцитах крови оценивался методом капельной цифровой ПЦР на приборе QX200 Droplet Digital PCR System (Bio-Rad). Выявлено, что генотип GG rs8078424 является протективным относительно развития клинически выраженного атеросклероза сонных артерий (OR=0,023, 95%Cl:0,08-0,62; p=0,003), ассоциирован с меньшим уровнем общего холестерина в сыворотке крови и повышенной экспрессией гена MIR21 в лейкоцитах крови пациентов. Потенциальными молекулярными механизмами ассоциации rs8078424 с атеросклерозом являются изменение сайта связывания транскрипционных факторов (FOXP1, SOX18, GATA3, HOXD9, HOXD10 и С/ EBPalpha), а также связь с экспрессией гена MIR21 в клетках органов-мишеней патологии. Полиморфизм локуса 17q23.1 (в области генов TUBD1, VMP1/MIR21) представляет интерес для более детального изучения подверженности к сердечно-сосудистым заболеваниям в контексте эпигенетических механизмов в отдельных клетках органов-мишеней патологии.

Ключевые слова: атеросклероз сонных артерий, rs8078424, уровень общего холестерина, miR-21.

Для цитирования: Гончарова И.А., Королева Ю.А., Слепцов А.А., Бабушкина Н.П., Кузнецов М.С., Козлов Б.Н., Назаренко М.С. Связь локуса 17q23.1 с клинически выраженным атеросклерозом сонных артерий. *Медицинская генетика* 2021; 20(10): 25-32. **DOI:** 10.25557/2073-7998.2021.10.25-32

Автор для корреспонденции: *Гончарова Ирина Александровна*, **e-mail:** irina.goncharova@medgenetics.ru **Финансирование.** Работа выполнена в рамках государственного задания Министерства науки и высшего образования. **Конфликт интересов.** Авторы заявляют об отсутствии конфликта интересов. **Поступила:** 25.09.2021.

The association of 17q23.1 locus with advanced carotid atherosclerosis

Goncharova I.A.1, Koroleva Iu.A.1, Sleptsov A.A.1, Babushkina N.P.1, Kuznetsov M.S.2, Kozlov B.N.2, Nazarenko M.S.1

- 1 Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences 10 Nab. Ushaiki St., Tomsk, 634050, Russian Federation
- 2 Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences 111a Kievskaya St., Tomsk, 634012, Russian Federation

In this study, we analyzed the association of rs8078424 (chr17:59873104) with the risk of advanced carotid atherosclerosis and disease-related traits. We also assessed the association of this genetic variant with the expression of *MIR21* gene in peripheral blood leukocytes of patients.

Methods. A group of cases included patients with advanced carotid atherosclerosis who had artery stenosis with 80% or more by ultrasound examination (n=104). We used two control groups. Resident population of Tomsk was the first group (n=161). A second group consists of relatively healthy individuals who had non-hemodynamically significant carotid atherosclerosis (24% or less; n=84). Genotyping of rs8078424 was performed using MALDI-TOF mass spectrometry on a Sequenom MassARRAY® (USA) platform. The expression level of the *MIR21* gene in peripheral blood leukocytes was assessed by droplet digital PCR on a QX200 Droplet Digital PCR System (Bio-Rad).

Results. The GG rs8078424 genotype was found to be protective against of advanced carotid atherosclerosis (OR=0.023, 95%Cl:0.08-0.62; p=0.003) and associated with a lower level of total cholesterol in the serum and increased *MIR21* gene expression in periph-

eral blood leukocytes of the patients. Potential molecular mechanisms of the association of rs8078424 with atherosclerosis include alteration of transcription factors binding sites (FOXP1, SOX18, GATA3, HOXD9, HOXD10, and C/EBPalpha) as well as relationship with the *MIR21* gene expression in cells of target organs.

Conclusion. The polymorphism of the 17q23.1 locus (in the region of the *TUBD1*, *VMP1/MIR21* genes) is of interest for a more detailed study of susceptibility to cardiovascular diseases in the context of epigenetic mechanisms in single cells of the target organs.

Keywords: carotid atherosclerosis, rs8078424, total cholesterol level, miR-21.

For citation: Goncharova I.A., Koroleva Iu.A., Sleptsov A.A., Babushkina N.P., Kuznetsov M.S., Kozlov B.N., Nazarenko M.S. The association of 17q23.1 locus with advanced carotid atherosclerosis. *Medicinskaya genetika* [*Medical genetics*] 2021; 20(10): 25-32. (In Russ.) **DOI:** 10.25557/2073-7998.2021.10.25-32

Corresponding author. Irina A Goncharova; e-mail: irina.goncharova@medgenetics.ru

Funding. The research was carried out under the state task of the Ministry of Science and Higher Education of the Russian Federation.

Conflict of interest. The authors declare no conflicts of interest.

Accepted: 25.09.2021.

Введение

В последнее десятилетие все большее внимание уделяется изучению эпигенетических механизмов, лежащих в основе развития многофакторных заболеваний, в том числе и атеросклероза. В качестве эпигенетических регуляторов развития патологических процессов выступают некодирующие РНК, в том числе микроРНК. Данные молекулы играют важную роль при развитии острых и хронических сердечно-сосудистых заболеваний, участвуя в регуляции иммунных реакций, воспалительного ответа, метаболизма липидов, запуская механизмы, определяющие фенотип гладкомышечных клеток (ГМК) и влияя на стабильность атеросклеротической бляшки [1].

Функционирование генов микроРНК (как и белоккодирующих генов), регулируется метилированием СрG-сайтов в районе локализации регуляторных элементов и, вместе с тем, может быть связано со структурным полиморфизмом ДНК. Поскольку последовательность генов микроРНК является консервативной, то для изучения влияния генетического полиморфизма на активность данных генов, можно выбрать регуляторные однонуклеотидные варианты (rSNPs), расположенные в сайтах связывания транскрипционных факторов, или cis-eQTL SNPs, ассоциированные с изменением экспрессии генов, локализованных в том же локусе.

МикроРНК miR-21 играет важную роль в атерогенезе и влияет на стабильность атеросклеротической бляшки и, следовательно, риск развития клинических осложнений заболевания [2]. В настоящем исследовании проведен анализ ассоциаций rs8078424 (ciseQTL SNP, локализованного на расстоянии 3,1 т.п.н. от 3' конца гена MIR21) с риском развития клинически выраженного атеросклероза сонных артерий и патогенетически значимыми для развития данной патологии количественными признаками, а также оценена связь

данного генетического варианта с экспрессией гена *MIR21* в лейкоцитах периферической крови пациентов.

Методы

В группу обследованных вошли 104 пациента с клинически выраженным атеросклерозом сонных артерий (ACA), из них 82 мужчины (средний возраст $63,9\pm7,7$ лет) и 22 женщины (средний возраст $63,6\pm7,7$ лет). У всех пациентов при ультразвуковом исследовании (УЗИ) обнаружен выраженный стеноз сонной артерии (>80%), что являлось показанием к каротидной эндартерэктомии.

В качестве контроля были выбраны две группы: популяционный контроль (КП; n=161; 88 мужчин, средний возраст 46.9 ± 11.6 лет, и 73 женщины, средний возраст 48.4 ± 8.8 лет) и группа, состоящая из относительно здоровых индивидов без клинических признаков атеросклероза (КБА; n=84.55 мужчин, средний возраст 72.2 ± 5.2 года и 29 женщин, средний возраст 71.4 ± 6.8 года). Всем индивидам группы КБА было проведено УЗИ сонных артерий, выявившее начальные стадии атеросклероза, но без гемодинамически значимых изменений (стеноз не более 24%). Подробное описание выборок пациентов представлено в **табл. 1**.

Формирование выборок и обследование пациентов с клинически выраженным атеросклерозом сонных артерий проводили на базе НИИ кардиологии Томского НИМЦ. Общими критериями для включения индивидов в исследование были отсутствие родственных связей между индивидами, этническая принадлежность к восточным европеоидам (славянам), отсутствие онкологических и других тяжелых соматических заболеваний. Проведение исследования одобрено Комитетом по биомедицинской этике НИИ кардиологии Томско-

го НИМЦ (Протокол №203 от 14 октября 2020г.). Все участники подписали информированное согласие о цели и возможных рисках исследования. Контрольные выборки были получены из биобанка НИИ медицинской генетики Томского НИМЦ «Биобанк населения Северной Евразии». Исследование проведено на базе ЦКП НИИ медицинской генетики Томского НИМЦ.

У всех индивидов получены образцы венозной периферической крови. Материалом для работы служила ДНК, выделенная из лейкоцитов цельной периферической крови стандартным фенол-хлороформным методом [3]. Генотипирование 18078424 выполняли методом MALDI-TOF масс-спектрометрии на приборе Sequenom MassARRAY® (США). Последовательность праймеров для генотипирования: прямой -5'-GCCTCCATAGTTATAAATGTC-3'; обратный -5'-AGCTACTGCGCCCAGGCCA-3'. Различие частот аллелей и генотипов между группами оценивали при помощи критерия χ^2 . Связь генотипа с количе-

ственными признаками оценивали с помощью критерия Краскела-Уоллеса.

Для изучения экспрессии гена MIR21 венозную кровь пациентов (n=21) забирали в вакуумные пробирки PAXgeneTM (Qiagen) и хранили в замороженом состоянии (-80°C) вплоть до эксперимента. Выделение РНК из лейкоцитов проводили с использованием набора PAXgeneTM Blood RNA Kit (Qiagen). Измерение концентрации и оценку качества РНК выполняли на спектрофотометре NanoDrop 8000, а также в 1% агарозном геле по соотношению интенсивности полос, соответствующих 18S и 28S рРНК. Получение кДНК осуществляли с помощью набора Omniscript RT Kit (Qiagen). Уровень экспрессии гена MIR21 (количество предшественника микроРНК (pre-miR-21)) в лейкоцитах крови оценивался с использованием капельной цифровой ПЦР на приборе QX200 Droplet Digital PCR System (Bio-Rad) по протоколу фирмы-производителя с праймерами и TagMan-зондами (Hs04231424 s1) производства ThermoFisher Scientific.

Таблица 1

Характеристика исследованных групп

	Пациенты с клинически	Популяционный	Контрольная группа							
Параметр	выраженным атеросклерозом	контроль	относительно здоровых							
	сонных артерий (ACA, n=104)	$(K\Pi, n=161)$	индивидов (КБА, n=84)							
Пол (мужчины:женщины)	82:22	88:73	55:29							
Возраст, лет (x±s.d.)	64,4±7,3	47,4±10,3	69,3±7,0							
Клинические параметры										
ИМТ, кг/м²(x ±s.d.)	29,0±4,5	26,1±4,3	27,4±4,5							
ИБС в анамнезе (%)	100,0	нд	13,0							
ИМ в анамнезе (%)	31,7	нд	4,8							
ОНМК в анамнезе (%)	33,6	нд	0							
СД2 в анамнезе (%)	22,1	нд	7,1							
АГ в анамнезе (%)	99,0	32,3	61,9							
Ультразвуковое исследование сонных артерий										
Степень стеноза (%)	епень стеноза (%) >80 нд <24									
Лабораторные данные (x ±s.d.)										
Общий холестерин (ммоль/л)	5,1±1,1	5,9±1,1	5,4±1,0							
Триглицериды (ммоль/л)	1,8±0,9	1,5±0,8	1,3±0,7							
ЛПВП (ммоль/л)	1,2±0,3	1,3±0,4	1,4±0,3							
ЛПНП (ммоль/л)	2,8±1,5	3,9±0,9	3,4±0,8							
Индекс атерогенности	3,1±1,4	3,1±1,2	3,1±1,0							
Глюкоза (ммоль/л)	6,2±1,9	5,2±1,1	5,8±1,1							
Прием лекарственных препаратов (%)										
Антикоагулянты/дезагреганты	89,2	0,0	0,0							
Антигипертензивные препараты	81,7	49,0	30,9							
Статины	62,2	0,0	5,9							
Противодиабетические препараты	29,5	0,0	1,2							

Примечание: АГ – артериальная гипертензия, ИМТ – индекс массы тела, ИБС – ишемическая болезнь сердца, ИМ – инфаркт миокарда, ЛПВП – липопротеины высокой плотности, ЛПНП – липопротеины низкой плотности, ОНМК – острое нарушение мозгового кровообращения, СД2 – сахарный диабет 2 типа, нд – нет данных.

Анализ экспрессии *MIR21* проводили путем оценки числа копий гена в микролитре. Во избежание влияния различного уровня белковых и химических примесей на конечный результат при оценке экспрессии генов с помощью технологии ddPCR по ранее предложенной рекомендации [4] была проведена нормализация экспрессии гена *MIR21* по отношению к экспрессии гена *GAPDH* (Hs99999905_m1).

Регуляторный потенциал и сцепление rs8078424 с другими SNPs локуса 17q23.1 анализировали с помощью онлайн сервиса HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/ haploreg.php), RegulomeDB (https://regulomedb. org/regulome-search?regions=chr17%3A57950464-57950465&genome=GRCh37) и браузера Ensembl (http://www.ensembl.org/Homo sapiens/Variation/ HighLD?db=core;r=17:59872604-59873604;v=rs807842 4;vdb=variation;vf=105659696#373514 tablePanel). Связь данного полиморфизма с экспрессией генов (eOTL) оценивали с помощью данных проекта Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/). Поиск сайтов связывания транскрипционных факторов проводили с использованием онлайн инструмента PROMO 3.0.2. Последовательности анализировали с максимальной степенью (5%) несходства матриц [5].

Результаты исследования и их обсуждение

При сравнении частот аллелей и генотипов гs8078424 между пациентами и двумя контрольными группами выявлено, что данный полиморфизм ассоциирован с клинически выраженным атеросклерозом сонных артерий. Частота генотипа GG в группе больных ACA (5,8%) не отличается от КП (6,2%), но статистически значимо ниже, чем в группе КБА (21,4%; таблица 2). Генотип GG является протек-

тивным по отношению к развитию клинически выраженного заболевания (OR=0,023,95% CI:0,08-0,62; p=0,003). Статистически значимое различие в частоте генотипа GG между КП (6,2%) и КБА (21,4%) может объясняться тем, что в группе популяционного контроля, несмотря на относительно меньший возраст индивидов по сравнению с другими выборками, присутствует существенная доля лиц с атеросклерозом (табл. 2).

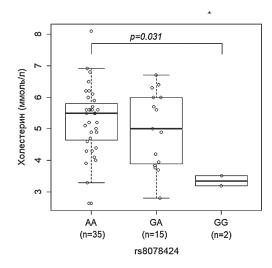
Оценка связи генотипов гs8078424 с изменчивостью количественных признаков в обследованных группах показала, что данный вариант ассоциирован с уровнем общего холестерина в сыворотке крови у пациентов с клинически выраженным ACA. Информация об уровне общего холестерина была доступна для 53 больных, из них 48,9% принимали статины. Выявлено, что генотип GG, являющийся протективным по отношению к развитию ACA, ассоциирован с меньшим уровнем общего холестерина в сыворотке крови $(3,36\pm0,22\ \text{ммоль/л})$ по сравнению с другими генотипами $(\text{AA}-5,29\pm1,06\ \text{ммоль/л};\ \text{AG}-4,99\pm1,21\ \text{ммоль/л};\ p=0,031;\ \text{рис. 1})$. Связи гs8078424 с другими патогенетически значимыми для заболевания количественными признаками не выявлено.

Одним из механизмов, объясняющих ассоциации генетических вариантов с различными клиническими фенотипами, может быть их влияние на функциональную активность генов в клетках органов-мишеней заболеваний. Однонуклеотидные варианты, расположенные в регуляторных элементах, изменяющие сайты связывания транскрипционных факторов — rSNPs или влияющие на экспрессию генов — eQTL-локусы, могут характеризоваться как «причинные» и вносить вклад в патогенез заболеваний.

Согласно онлайн ресурсам RegulomeDB и HaploReg v4.1, полиморфизм rs8078424 расположен в области

Таблица 2
Ассоциация rs8078424 гена TUBD1 с клинически выраженным атеросклерозом сонных артерий

Ген ID SNP	Генотип/ Аллель	Численность (частота) генотипов, аллелей			Уровень значимости (р)		
		ACA	КП	КБА	АСА/ КП	АСА/ КБА	КП/ КБА
TUBD1 (rs8078424)	AA+AG	98 (94,2)	151 (93,8)	66 (78,6)	0,907	0,003	0,001
	GG	6 (5,8)	10 (6,2)	18 (21,4)			
	A	166 (79,8)	239 (74,2)	111 (66,1)	0,169	0,004	0,073
	G	42 (20,2)	83 (25,8)	57 (33,9)			


Примечание. ACA — пациенты с клинически выраженным атеросклерозом сонных артерий, $K\Pi$ — популяционный контроль, KБA — индивиды без клинических признаков атеросклероза; p — уровень значимости, полученный для критерия χ^2 .

открытого хроматина (участка, гиперчувствительного к ДНКазе I) и является сайтом связывания транскрипционных факторов (FOXP1, SOX18 и GATA3) в коронарных артериях и Т-клетках крови. Данные транскрипционные факторы могут играть существенную роль при развитии атеросклеротического поражения артерий. Показано, что при атеросклерозе в эндотелиальных клетках коронарных артерий наблюдается подавление экспрессии гена FOXP1 и увеличение гена SOX18 [6, 7]. На экспериментальных моделях (мыши с нокаутом гена *Gata3* в миелоидных клетках) была показана роль этого транскрипционного фактора в патогенезе сердечно-сосудистых заболеваний. Отсутствие Gata3 значительно снижало степень ремоделирования миокарда и приводило к улучшению сердечной функции при ишемии или перегрузке давлением [8].

Анализ связывания транскрипционных факторов *in silico* в области rs8078424 показал, что замена нуклеотидов A>G приводит к потере сайтов связывания для транскрипционных факторов HOXD9, HOXD10 и C/EBPalpha (**puc. 2**), которые, в свою очередь, играют роль в развитии сердечно-сосудистых заболеваний.

Исследования последних лет продемонстрировали, что белковые продукты генов семейства НОХ непосредственно участвуют в морфогенезе сердечнососудистой системы. Мутации генов *НОХ* приводят к развитию врожденных пороков сердца и артерий [9]. Исследования, касающиеся роли НОХ-семейства в постэмбриональном периоде развития, немногочисленны. Показана активация путей ТСБ, WNT, Notch,

НІГ1α, TWIST1 и HOX в областях сосудов с низким напряжением сдвига, ассоциированным с развитием атеросклеротических поражений [10]. Транскрипционный фактор C/EBPalpha относится к семейству белков ССААТ/связывающих энхансеры (С/ЕВР), которые регулируют клеточную пролиферацию и дифференцировку, участвуют в адипогенезе и метаболизме глюкозы и липидов в печени, а также влияют на экспрессию многих генов, белковые продукты которых регулируют воспалительные и иммунные процессы. Активация С/ЕВР в ГМК аорты может вызывать избыточное

Рис. 1. Уровень общего холестерина в сыворотке крови пациентов с клинически выраженным АСА в зависимости от генотипа rs8078424.

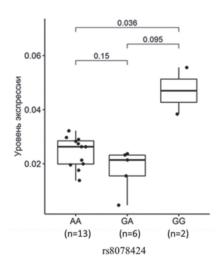

aatgcaagagatAACAATATAAGTAagacatttata AACAATA PR B, PR A, C/EBPalpha ROS PR B, PR B, PR A ROS PR B, PR B, PR B, PR A ROS PR B, PR

Рис. 2. Сайты связывания транскрипционных факторов в области rs8078424.

образование активных форм кислорода, продуцируемых членами семейства НАДФН-оксидазы, что способствует дисфункции ГМК и развитию атеросклеротических бляшек [11].

Вариант rs8078424 расположен в интроне 6 гена дельта-тубулина (*TUBD1*), кодирующего один из центросомных белков, основной молекулярной функцией которого является формирование микротрубочек веретена деления и контроль пролиферации клеток (https://www.uniprot.org/uniprot/Q9UJT1). Данный полиморфизм находится в блоке сцепления с другими SNPs в генах TUBD1 и RPS6KB1 (http://www.ensembl.org/Homo sapiens/Variation/ HighLD?db=core;r=17:59872604-59873604;v=rs8078424; vdb=variation;vf=105659696#373514 tablePanel; https:// pubs.broadinstitute.org/mammals/haploreg/haploreg. php). Кроме того, по данным проекта Genotype-Tissue Expression rs8078424 является eQTL-локусом и влияет на изменение экспрессии нескольких генов в различных тканях (https://www.gtexportal.org/home/snp/ rs8078424). Так, например, в тибиальной артерии генотип GG rs8078424 связан со снижением экспрессии гена *TUBD1*, но увеличением экспрессии гена *PTRH2*, псевдогена DHX40P1, а также генов длинных некодирующих РНК (*RP11-758H9.2* и *RP11-178C3.2*).

Ассоциаций с сердечно-сосудистыми заболеваниями и атеросклерозом для этих генов показано не было, однако показана связь коэкспрессии определенных продуктов альтернативного сплайсинга гена *TUBD1*

Рис. 3. Средний уровень экспрессии гена *MIR21* в лейкоцитах крови пациентов с клинически выраженным ACA в зависимости от генотипа rs8078424. Уровень экспрессии представлен в виде нормализованного отношения *MIR21* (число копий/мкл)/*GAPDH* (число копий/мкл).

в периферической крови с риском развития диабетической ретинопатии у больных сахарным диабетом второго типа, являющегося фактором риска атеросклероза [12].

В ряде работ полиморфизм локуса 17q23.1 (в области генов *TUBD1*, *VMP1/MIR21*), в том числе rs8078424, ассоциирован с воспалительными заболеваниями толстого кишечника через изменение уровня метилирования в области генов VMP1/MIR21 в клетках крови и в стенке кишечника [13–16]. В частности, генотип GG rs8078424 связан с более низким уровнем метилирования нескольких СрG-сайтов в области генов *VMP1/MIR21* в клетках крови по сравнению с другими генотипами [13], а rs11650106 гена VMP1 ассоциирован с изменением активности циркулирующей липопротеин-ассоциированной фосфолипазы A2 (Lp-PLA2) в сыворотке крови, повышенный уровень которой является независимым фактором риска развития атеросклероза, инфаркта миокарда и инсульта [17]. Следует отметить, что при воспалительных заболеваниях толстого кишечника наблюдается чрезмерная активация иммуно-воспалительных реакций, приводящих к развитию патофизиологических процессов в стенке данного органа, которые имеют общие черты с изменениями в стенке артерий, происходящими во время прогрессирования атеросклероза, разрыва атеросклеротической бляшки и тромбоза [18].

В связи с этим, на следующем этапе исследования был проведен анализ связи rs8078424 с экспрессией гена MIR21 (pre-miR-21) в лейкоцитах крови у пациентов с клинически выраженным ACA (n=21). В результате выявлено, что генотип GG ассоциирован с более высоким уровнем экспрессии rename MIR21 по сравнению с rename renam

Зрелая miR-21 продуцируется из предшественника, кодируемого геном MIR21, нуклеотидная последовательность которого перекрывается с 3'-концом гена VMP1.

Ранее было показано, что экспрессия miR-21 влияет на развитие атеросклероза путем регулирования воспаления, продукции оксида азота, пролиферации и апоптоза. К настоящему времени накоплены данные, о том, что повышение экспрессии miR-21 оказывает разнонаправленный эффект на формирование патологического фенотипа как в клетках различных типов, так и на различных стадиях прогрессирования атеросклероза. Например, в ГМК гиперэкспрессия miR-21 ослабляет апоптоз и усиливает пролиферацию, оказывая атерогенный эффект [19]. В клетках эндотелия на ранних этапах развития атеросклероза miR-21 оказывает провоспалительный эффект (путём активации экспрессии провоспалительного белка VCAM-1), но на поздних стадиях патологического процесса эта ми-

кроРНК усиливает фосфорилирование эндотелиальной NO-синтазы, что подавляет экспрессию провоспалительных цитокинов, активацию и адгезию моноцитов и оказывает атеропротективный эффект [1, 20]. В макрофагах на ранних этапах атеросклероза усиленная экспрессия miR-21 способствует подавлению воспаления и иммунного ответа [21], однако в макрофагах сформировавшихся атеросклеротических бляшек miR-21 стимулирует экспрессию металлопротеиназы ММР-9, что приводит к истончению фиброзной покрышки [22]. В клинических исследованиях показано, что в тканях артерий, поражённых атеросклерозом, происходит усиление экспрессии miR-21 по сравнению с непоражёнными артериями [23]. В лейкоцитах периферической крови показано ослабление экспрессии miR-21 у пациентов с незначительным стенозом коронарных артерий (обусловленным атеросклерозом) по сравнению с контрольной группой [24], при значительном же стенозе коронарных артерий, а также стенокардии и инфаркте миокарда наблюдается усиление экспрессии miR-21 [24, 25]. Возможно, что эта ситуация обусловлена противовоспалительным и антиатерогенным эффектом данной микроРНК, и повышение экспрессии гена MIR21 в лейкоцитах периферической крови является компенсаторной реакцией в ответ на прогрессию атеросклероза.

Кроме этого, показана связь увеличения уровня циркулирующей в плазме miR-21 с менее атерогенным липидным профилем, в том числе со снижением уровня общего холестерина в сыворотке, у пациентов с острым коронарным синдромом без подъема сегмента ST [26]. С другой стороны, применение статинов вызывает увеличение экспрессии 41 микроРНК, включая miR-21, в цельной крови и плазме у пациентов с нестабильной стенокардией [27]. Не исключено, что влияние miR-21 на регуляцию метаболизма липидов и функционирование сигнальных путей, вовлеченных в патогенез атеросклероза в ответ на воздействие статинами, является одним из возможных объяснений полученных в настоящем исследовании ассоциаций.

Настоящее исследование имеет ограничения в виде малочисленности обследованных групп, сфокусированности на одной этнической группе (восточные европеоиды — славяне) и определенном фенотипе атеросклероза (сонные артерии). Однако преимуществом работы является попытка объяснения полученной ассоциации гs8078424 с клинически выраженным АСА с помощью функциональной аннотации полиморфизма локуса 17q23.1 как *in silico*, так и путём экспериментального анализа экспрессии гена микроРНК в лейкоцитах крови пациентов.

Заключение

В результате исследования выявлена протективная ассоциация генотипа GG rs8078424 относительно риска развития клинически выраженного АСА (OR=0.023, 95%CI:0.08-0.62; p=0.003), a также егосвязь с меньшим уровнем общего холестерина в сыворотке крови и повышенной экспрессией гена MIR21 в лейкоцитах крови пациентов. Потенциальными молекулярными механизмами ассоциации rs8078424 с атеросклерозом является изменение сайта связывания транскрипционных факторов (FOXP1, SOX18, GATA3, HOXD9, HOXD10 и C/EBPalpha), а также связь с экспрессией гена MIR21. Полиморфизм локуса 17q23.1 (в области генов *TUBD1*, *VMP1/MIR21*) представляет интерес для более детального изучения подверженности к сердечно-сосудистым заболеваниям в контексте эпигенетических механизмов в отдельных клетках органов-мишеней патологии.

Литература/References

- Andreou I., Sun X., Stone P.H., et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015; 21(5):307-318. doi: 10.1016/j.molmed.2015.02.003.
- Fasolo F., Di Gregoli K., Maegdefessel L., Johnson J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res. 2019; 115(12):1732-1756. doi: 10.1093/cvr/cvz203
- Herrmann B.G., Frischauf A.M. Isolation of genomic DNA. Methods Enzymol. 1987; 152:180-183. doi: 10.1016/0076-6879(87)52018-3.
- 4. Taylor S.C., Laperriere G., Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017; 7(1):2409. doi: 10.1038/s41598-017-02217-x.
- Messeguer X., Escudero R., Farré D., et al. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333-334. doi: 10.1093/ bioinformatics/18.2.333.
- García-Ramírez M., Martínez-González J., Juan-Babot J.O., et al. Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol. 2005; 25(11):2398-2403. doi: 10.1161/01.ATV.0000187464.81959.23.
- Zhuang T., Liu J., Chen X., et al. Endothelial Foxp1 Suppresses Atherosclerosis via Modulation of Nlrp3 Inflammasome Activation. Circ Res. 2019; 125(6):590-605. doi: 10.1161/CIRCRESAHA.118.314402.
- Yang M., Song L., Wang L., et al. Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following Myocardial Infarction or Pressure Overload Hypertrophy. J Am Coll Cardiol. 2018; 72(8):885-904. doi: 10.1016/j.jacc.2018.05.061.
- Lescroart F., Zaffran S. Hox and Tale transcription factors in heart development and disease. Int J Dev Biol. 2018; 62(11-12):837-846. doi: 10.1387/ijdb.180192sz.
- Souilhol C., Serbanovic-Canic J., Fragiadaki M., et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52-63. doi: 10.1038/s41569-019-0239-5.

ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

- Manea S-A., Todirita A., Raicu M., Manea A. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med. 2014;18(7):1467-1477. doi: 10.1111/jcmm 12289
- 12. Villegas-Ruiz V., Hendlmeier F., Buentello-Volante B., et al. Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development. Exp Eye Res. 2017;155:99-106. doi: 10.1016/j.exer.2017.01.004.
- Ventham N.T., Kennedy N.A., Adams A.T., et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun. 2016;7:13507. doi: 10.1038/ncomms13507.
- O'Leary K., Adams A., Nimmo E., et al. Genetics, methylation, and disease state interact at the VMP1/MIR21 locus. Journal of Crohn's and Colitis. 2018; 12(1): S544. https://doi.org/10.1093/ecco-jcc/ jjx180.973
- Prakash T., Veerappa A., Ramachandra N.B. Complex interaction between HNRNPD mutations and risk polymorphisms is associated with discordant Crohn's disease in monozygotic twins. Autoimmunity. 2017;50(5):275-276. doi: 10.1080/08916934.2017.1300883.
- Cruz-Romero C., Guo A., Bradley W.F., Novel Associations Between Genome-Wide Single Nucleotide Polymorphisms and MR Enterography Features in Crohn's Disease Patients. J Magn Reson Imaging. 2021;53(1):132-138. doi: 10.1002/jmri.27250.
- Chu A.Y., Guilianini F., Grallert H., et al. Genome-wide association study evaluating lipoprotein-associated phospholipase A2 mass and activity at baseline and after rosuvastatin therapy. Randomized Controlled Trial Circ Cardiovasc Genet. 2012; 5(6):676-685. doi: 10.1161/CIRCGENETICS.112.963314.
- Kristensen S.L., Ahlehoff O., Lindhardsen J., et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death--a Danish nationwide cohort study. PLoS One. 2013;8(2):e56944. doi: 10.1371/ journal.pone.0056944.
- Sun P., Tang L.N., Li G.Z., Effects of MiR-21 on the proliferation and migration of vascular smooth muscle cells in rats with athero-

- sclerosis via the Akt/ERK signaling pathway. Eur Rev Med Pharma-col Sci. 2019;23(5):2216-2222. doi: 10.26355/eurrev 201903 17269.
- Weber M., Baker M.B., Moore J.P., Searles C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393(4):643-8. doi: 10.1016/j.bbrc.2010.02.045.
- Das A., Ganesh K., Khanna S., et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192(3):1120-9. doi: 10.4049/jimmunol. 1300613
- Fan X., Wang E., Wang X., et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014; 96(2):242-9. doi: 10.1016/j.yexmp.2014.02.009.
- Markus B., Grote K., Worsch M., et al. Differential Expression of MicroRNAs in Endarterectomy Specimens Taken from Patients with Asymptomatic and Symptomatic Carotid Plaques. PLoS One. 2016; 11(9):e0161632. doi: 10.1371/journal.pone.0161632.
- Nariman-Saleh-Fam Z., Vahed S.Z., Aghaee-Bakhtiari S.H., et al. Expression pattern of miR-21, miR-25 and PTEN in peripheral blood mononuclear cells of patients with significant or insignificant coronary stenosis. Gene. 2019; 698:170-178. doi: 10.1016/j.gene.2019.02.074.
- 25. Li S., Fan Q., He S., et al. MicroRNA-21 negatively regulates Treg cells through a TGF- β 1/Smad-independent pathway in patients with coronary heart disease. Cell Physiol Biochem. 2015; 37(3):866-78. doi: 10.1159/000430214.
- Miśkowiec D., Lipiec P., Wierzbowska-Drabik K., et al. Association between microRNA-21 concentration and lipid profile in patients with acute coronary syndrome without persistent ST-segment elevation. Pol Arch Med Wewn. 2016;126(1-2):48-57. doi: 10.20452/ pamw.3267.
- Li J., Chen H., Ren J., et al. Effects of statin on circulating microR-NAome and predicted function regulatory network in patients with unstable angina. BMC Med Genomics. 2015; 8:12. doi: 10.1186/ s12920-015-0082-4.