Полиморфизм гена NCF4, уровень глутатиона и гликированного гемоглобина у больных сахарным диабетом 2 типа в сочетании с ишемической болезнью сердца

Азарова Ю.Э.

ФГБОУ ВО «Курский государственный медицинский университет» Минздрава России 305041 г. Курск, ул. К. Маркса,3

Общим патогенетическим звеном сахарного диабета 2 типа (СД2) и ишемической болезни сердца (ИБС) является окислительный стресс, развивающийся в результате дисбаланса продукции активных форм кислорода (АФК) и их обезвреживания системой антиоксидантной защиты. Нейтрофильный цитозольный фактор 4 (NCF4) непосредственно вовлечен в синтез супероксид-аниона в составе НАДФН-оксидазы. Целью настоящего исследования стало изучение ассоциаций восьми однонуклеотидных полиморфизмов гена NCF4 rs5995355 (A>G), rs5995357 (T>A), rs1883112 (G>A), rs4821544 (G>A), rs760519 (T>C), rs729749 (C>T), rs2075938 (G>A) и rs2075939 (C>T) с предрасположенностью к СД2, а также с риском развития ИБС у пациентов с СД2. В исследование включено 1579 пациентов с СД2 (у 448 из которых была также диагностирована ИБС) и 1627 условно здоровых добровольцев. Генотипирование выполнено методом MALDI-TOF масс-спектрометрии на платформе MassArray Analyzer 4. Статистическую обработку полученных данных проводили с помощью онлайн программы SNPStats. Частоты аллелей и генотипов изучаемых SNPs у больных СД2 не отличались от таковых в группе контроля (p>0,05). Установлены ассоциации генотипов rs4821544-C/C (OR 1,71, 95Cl 1,12-2,59, p=0,013) и rs5995357-A/A (OR 3,74, 95Cl 1,14-12,31, p=0,026) с предрасположенностью к ИБС у больных СД2 женщин. Несмотря на отсутствие ассоциаций изучаемых SNPs гена NCF4 с ИБС у мужчин, именно у представителей мужского пола выявлены ассоциации гаплотипической структуры NCF4 (p=0,0064), а также гаплотипов H2 (OR 1,79, 95Cl 1,16-2,76, p=0,0085) и H3 (OR 1,77, 95Cl 1,06-2,97, p=0,03) с повышенным риском развития ИБС при СД2. Кроме того, выявлены не зависящие от пола ассоциации генотипа rs4821544-C/C с повышенным уровнем гликированного гемоглобина HbA1c (p=0,032) и окисленного глутатиона плазмы крови (p=0.049) у пациентов с ИБС и СД2. В этой же категории больных носительство гаплотипов H4 rs5995355G-rs5995357A-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075938Grs2075939C и H10 rs5995355A-rs5995357T-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075938A-rs2075939C гена *NCF4* ассоциировалось с повышением содержания HbA1c на 8,67% (p=0,011) и 6,27% (p=0,038), соответственно. Полученные данные свидетельствуют о значимом вкладе полиморфизма гена NCF4 в патогенез ИБС у пациентов с СД2 и создают научный задел для разработки таргетной терапии и профилактики этой патологии.

Ключевые слова: сахарный диабет 2 типа, ишемическая болезнь сердца, гликированный гемоглобин, нейтрофильный цитозольный фактор 4, однонуклеотидный полиморфизм, наследственная предрасположенность, оксидантный стресс.

Для цитирования: Азарова Ю.Э. Полиморфизм гена *NCF4*, уровень глутатиона и гликированного гемоглобина у больных сахарным диабетом 2 типа в сочетании с ишемической болезнью сердца. *Медицинская генетика* 2021; 20(8): 37-47. **DOI:** 10.25557/2073-7998.2021.08.37-47

Автор для корреспонденции: Азарова Юлия Эдуардовна; e-mail: azzzzar@yandex.ru Финансирование. Работа выполнена при финансовой поддержке гранта РНФ (проект № 20-15-00227). Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. Поступила: 30.07.2021.

NCF4 gene polymorphism, level of glutathione and glycated hemoglobin in type 2 diabetics with coronary artery disease

Azarova lu. E.

Kursk State Medical University 3 K. Marx street, Kursk, 305041, Russian Federation

A common pathogenic link in type 2 diabetes mellitus (T2D) and coronary artery disease (CAD) is oxidative stress, which develops as a result of an imbalance in the production of reactive oxygen species (ROS) and their neutralization by the antioxidant defense system. Neutrophilic cytosolic factor 4 (NCF4) is directly involved in the synthesis of superoxide anion as part of NADPH oxidase. In this regard, the purpose of this study was to investigate the associations of eight single nucleotide polymorphisms of the *NCF4* gene rs5995355 (A>G), rs5995357 (T>A), rs1883112 (G>A), rs4821544 (G>A), rs760519 (T>C), rs729749 (C>T), rs2075938 (G>A), rs2075939 (C>T) with a predisposition to T2D, as well as the risk of developing CAD in patients with T2D.

The study included 1579 patients with T2D (448 of them were also diagnosed with CAD) and 1627 relatively healthy volunteers. Genotyping was performed using MALDI-TOF mass spectrometry on the MassArray Analyzer 4 platform. Statistical processing of the obtained data was carried out using the SNPStats online program.

The allele and genotype frequencies of the studied SNPs in T2D patients did not differ from those in the control group (p>0.05). Associations of genotypes rs4821544-C/C (OR 1.71, 95Cl 1.12-2.59, p=0.013) and rs5995357-A/A (OR 3.74, 95Cl 1.14-12.31, p=0.026) with a predisposition to CAD in diabetic females were established. Despite the absence of associations of the studied SNPs *NCF4* with CAD in males, associations of the haplotype structure of *NCF4* (p=0.0064), as well as the haplotypes H2 (OR 1.79, 95Cl 1.16-2.76, p=0.0085) and H3 (OR 1.77, 95Cl 1.06-2.97, p=0.03) with an increased risk of CAD were observed exclusively in diabetic males. In addition, a sex-independent relationship of the rs4821544-C/C genotype with an increased level of glycated hemoglobin (p=0.032) and oxidized glutathione (p=0.049) was revealed in patients with CAD and T2D. In the same category of patients haplotypes H4 rs5995355G-rs5995357A-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075938G-rs2075939C and H10 rs5995355A-rs5995357T-rs1883112G-rs4821544C-rs760519T-rs729749C-rs2075939C of *NCF4* gene were associated with an increase in the content of HbA1c 8.67 % (p=0.011) and 6.27% (p=0.038), respectively.

The data obtained indicate a significant contribution of the *NCF4* gene polymorphism to the pathogenesis of CAD in patients with T2D and create a scientific basis for the development of targeted therapy and prevention of this pathology.

Keywords: type 2 diabetes mellitus, coronary heart disease, glycated hemoglobin, neutrophil cytosolic factor 4, single-nucleotide polymorphism, hereditary predisposition, oxidative stress.

For citation: Azarova lu. E. NCF4 gene polymorphism, level of glutathione and glycated hemoglobin in type 2 diabetics with coronary artery disease. Meditsinskaya genetika [Medical genetics] 2021; 20(8): 37-47. (In Russ.).

DOI: 10.25557/2073-7998.2021.08.37-47

Corresponding author: Iuliia E. Azarova, e-mail: azzzzar@yandex.ru

Funding. The study was carried out with financial support of Russian Science Foundation grant (project No. 20-15-00227).

Conflict of interest. The authors declare no conflict of interest.

Accepted: 30.07.2021.

Введение

ахарный диабет 2 типа (СД2) представляет собой нарушение углеводного обмена, вызванное преимущественной инсулинорезистентностью и относительной инсулиновой недостаточностью или преимущественным нарушением секреции инсулина с инсулинорезистентностью или без нее [1]. Классическая черта СД2, хроническая гипергликемия, активирует опасный метаболический путь, вовлекающий диацилглицерол, протеинкиназу С и НАДФН-оксидазу (NOX) (с субъединицами СҮВА, СҮВВ, NCF1, NCF2, NCF4, NOXA1, NOXO1 и их молекулярными включателями-выключателями RAC1 и RAC2), кульминацией которого является избыточная продукция активных форм кислорода (АФК) [2].

Последние исследования в области редокс-биологии доказали существование так называемого порочного круга генерации АФК, в котором чрезмерное образование супероксид-аниона O_2 и перекиси водорода H_2O_2 NOX-ферментами приводит к нарушению функционирования митохондрий и увеличению продукции АФК в цепи переноса электронов, главным образом, за счет активации белка-разобщителя (UCP) тканевого дыхания и окислительного фосфорилирования [3]. Следует отметить, что целый ряд белков-мишеней инсулинового сигналинга и его регуляторов (АКТ, FOXO, PTEN, PT1B, JNK, GAB1) являются редоксчувствительными. В частности, остатки цистеина

Суѕ374 и Суѕ405 белка-адаптора трансдукции сигнала инсулина GAB1 контролируются изоферментом NOX4 [4, 5]. Увеличение продукции АФК в условиях дефицита антиоксидантов приводит к изменению редоксстатуса упомянутых белков и снижению чувствительности печени и скелетных мышц к инсулину (периферической резистентности) [6], а также к торможению пролиферации бета-клеток поджелудочной железы с последующим запуском их апоптоза и дедифференцировки, что лежит в основе прогрессирующей потери функционирующей массы бета-клеток и снижения секреции инсулина [7].

Показано, что окислительный стресс служит движущей силой развития многочисленных микрососудистых и макрососудистых осложнений СД2, включая атеросклеротическое поражение сосудов и ишемическую болезнь сердца (ИБС) [8—10], которая часто протекает бессимптомно и диагностируется в момент верификации диагноза у половины пациентов с диабетом [11, 12]. При этом смертность в случае развития острого коронарного синдрома у больных СД2 в 2—3 раза выше.

Оба заболевания (СД2 и ИБС), входят в группу мультифакториальной патологии и развиваются в результате взаимодействия общих генетических и средовых факторов риска. В ряде отечественных и зарубежных исследований была доказана роль генов, кодирующих ключевые ферменты антиоксидантной

и прооксидантной системы в детерминации предрасположенности к ИБС в условиях диабетической гипергликемии [13–16]. Заслуживает упоминания тот факт, что у больных СД2 эндотелиальная NO синтаза в результате глутатионилирования переключается с синтеза оксида азота на продукцию супероксид-аниона с последующим образованием крайне агрессивного радикала пероксинитрита ONOO, окисляющего липопротеины низкой плотности и способствующего образованию атеросклеротических бляшек [17]. Супрафизиологический уровень перекиси водорода в плазме крови приводит к вазоконстрикции, эндотелиальной дисфункции, гипертензии, провоспалительному и протромботическому статусу за счет секреции цитокинов, хемокинов, активации NF-kB, апоптоза клеток эндотелия и гладкомышечных клеток сосудов [18].

В ряде работ показано участие субъединиц НАДФН-оксидазы и ее изоформ в патогенезе диабета: в частности, гибель бета-клеток связана с NOX2синтезированными АФК [19], тогда как тот же процесс в клетках эндотелия опосредован изоферментом NOX4 [20]. Xing и соавт. показали, что нейтрофилы больных латентным аутоиммунным диабетом взрослых (LADA) отличаются повышенной активностью НАДФНоксидазы и усиленной генерацией АФК за счет увеличения экспрессии нейтрофильного цитозольного фактора 4, что способствует прямому повреждению бета-клеток [21]. Данные о роли гена NCF4 в развитии СД2 и ИБС в литературе отсутствуют. В этой связи целью настоящего исследования стало изучение ассоциаций восьми однонуклеотидных полиморфизмов гена NCF4 rs5995355 (A>G), rs5995357 (T>A), rs1883112 (G>A), rs4821544 (G>A), rs760519 (T>C), rs729749 (C>T), rs2075938 (G>A), rs2075939 (C>T) с предрасположенностью к СД2, а также с риском развития ИБС у пациентов с СД2.

Методы

Протокол исследования одобрен Региональным этическим комитетом при Курском государственном медицинском университете (выписка из протокола №10 от 12.12.2016 г.). В исследование было включено 1579 пациентов с СД2 (591 мужчин и 988 женщин, средний возраст 61,3±10,4 года), получавших стационарное лечение на базе эндокринологического отделения Курской городской клинической больницы скорой медицинской помощи в период с декабря 2016 по октябрь 2019 года. Группу контроля составили 1627 условно здоровых добровольцев (601 мужчина и 1026 женщин, средний возраст 60,8±6,4 года). Исследуемые группы были сопоставимы как

по полу, так и по возрасту. Критериями включения в группу больных служили: наличие верифицированного врачом диагноза болезни, подтвержденного клинически и лабораторно-инструментально, возраст старше 35 лет, наличие письменного информированного согласия на участие в исследовании. Критерии исключения больных из основной выборки являлись: выраженная степень декомпенсации СД2 или кома, заболевания экзокринной части поджелудочной железы, опухоли поджелудочной железы, муковисцидоз, гемохроматоз, фиброкалькулезная панкреатопатия, эндокринопатии, генетические синдромы, сочетающиеся с СД (перечень приведен ранее [22]), а также возраст младше 35 лет и отсутствие письменного информированного согласия на участие в проекте. Критериями включения лиц в группу контроля служили: возраст старше 35 лет, нормальные значения гликемии согласно ВОЗ, 1999-2013, отсутствие тяжелых хронических заболеваний, наличие письменного информированного согласия. Критериями исключения из группы контроля являлись: возраст младше 35 лет, эпизоды гипергликемии в анамнезе, наличие тяжелых хронических заболеваний, отсутствие письменного информированного согласия.

Для проведения генетических исследований, у всех пациентов с СД2 и здоровых лиц на основе письменного информированного согласия проводили забор 5 мл венозной крови натощак в вакуумные пробирки Vacuette с ЭДТА в качестве антикоагулянта. Геномную ДНК выделяли колоночным методом с помощью набора QIAamp DNA Blood Mini Kit (Qiagen) на автоматической станции для экстракции белков и нуклеиновых кислот QiaCube (Qiagen), а также методом фенольно-хлороформной экстракции. Для молекулярно-генетического анализа было отобрано 8 однонуклеотидных полиморфизмов гена NCF4 с выраженным регуляторным потенциалом, а именно, rs5995355 (A>G), rs5995357 (T>A), rs1883112 (G>A), rs4821544 (G>A), rs760519 (T>C), rs729749 (C>T), rs2075938 (G>A), rs2075939 (C>T). Генотипирование полиморфизмов гена NCF4 проводили с использованием технологии iPLEX на геномном время пролетном масс-спектрометре MassARRAY Analyzer 4 (Agena Bioscience). Дизайн мультиплекса SNPs и подбор праймеров для ПЦР и iPLEX реакций осуществляли с помощью онлайн программы MassARRAY Assay Design Suite (https:// agenacx.com). Праймеры были синтезированы компанией Evrogen (Москва).

Содержание перекиси водорода H_2O_2 и окисленного глутатиона GSSG в плазме крови участников исследования определяли флуориметрическим

и колориметрическим методами с помощью наборов OxiSelect ROS/RNS Assay kit (Cell Biolabs) и OxiSelect GSH/GSSG Assay kit (Cell Biolabs), соответственно, на микропланшетном ридере Varioscan Flash (Thermo Fisher Scientific). Концентрации глюкозы, гликированного гемоглобина, триглицеридов, общего холестерина и его подфракций липопротеинов низкой и высокой плотности оценивали с помощью биохимических наборов фирмы Диакон-ДС на полуавтоматическом биохимическом анализаторе Ral-15.

Влияние полиморфных вариантов генов на биохимические показатели анализировалось методом линейного регрессионного анализа с поправкой на пол, возраст и индекс массы тела. Статистическую обработку полученных данных проводили методом логистической регрессии с поправками на возраст и индекс массы тела, с помощью онлайн программы SNPStats (https:// www.snpstats.net/). Тестировали пять генетических моделей: кодоминантную, доминантную, рецессивную, сверхдоминантную и log-аддитивную. В качестве лучшей выбирали модель с наименьшим численным значением критерия Акаике (AIC, Akaike information). Ассоциация считалась значимой при р<0,05. Для анализа соответствия распределения частот генотипов равновесию Харди-Вайнберга и сравнения частот аллелей и генотипов между группами применяли точный тест Фишера.

Результаты

Распределение частот генотипов в исследуемых группах соответствовало равновесию Харди-Вайнберга (р>0,05). Анализ неравновесия по сцеплению SNPs гена *NCF4* показал, что rs760519, rs729749, rs2075938 и rs2075939 сцеплены между собой (D'>0,8, p<0,0001). SNP rs5995355 был сцеплен с rs5995357 (D'=0,9898, p<0,0001) и с rs4821544 (D'=0,9863, p<0,0001). Последний также сцеплен с rs5995357 (D'=0,9356, p<0,0001).

В табл. 1 представлены результаты анализа ассоциаций изучаемых SNPs гена NCF4 с предрасположенностью к СД2, а также с предрасположенностью к ИБС у больных СД2. Как видно из табл. 1, ни один из полиморфных локусов NCF4 не был ассоциирован с риском развития СД2 (p>0,05). В то же время минорный аллель rs4821544-C (OR 1,18, 95CI 1,01–1,40, p=0,045) и генотип rs4821544-C/C (OR 1,59, 95CI 1,12–2,26, p=0,0095) ассоциировались с повышенным риском ИБС у пациентов с СД2.

Анализ генетических и биохимических данных у больных с сочетанием СД2 и ИБС установил, что носители генотипа rs4821544-С/С имели на 6,69% более высокий уровень гликированного гемоглобина

(95СІ 0,61-12,78, p=0,032), чем носители альтернативных генотипов. В табл. 2 представлены ассоциации гаплотипов гена *NCF4* с уровнем гликированного гемоглобина у пациентов с СД2 и ИБС. Как видно из табл. 2, носительство гаплотипов H4 и H10 *NCF4* ассоциировалось с повышением содержания HbA1c на 8,67% и 6,27%, соответственно.

Также установлено, что генотип гs4821544-С/С ассоциирован с повышением на 0,95 мкмоль/л концентрации окисленного глутатиона GSSG в плазме крови (p=0,049), тогда как генотипы rs729749-С/Т-Т/Т (-0,11, 95СІ -0,21—0,02, p=0,018) и rs2075939-С/Т-Т/Т NCF4 (-0,14, 95СІ -0,24—0,05, p=0,004) были связаны с пониженным содержанием липопротеинов высокой плотности у пациентов с ИБС на фоне СД2.

Принимая во внимание тот факт, что риск ИБС связан с полом, анализ ассоциаций изучаемых SNPS NCF4 был проведен раздельно у мужчин и женщин (табл. 3). Как следует из табл. 3, выявленная в общей группе пациентов с ИБС и СД2 ассоциация генотипа rs4821544-C/C с риском ИБС характерна только для женщин: OR 1,71, 95CI 1,12-2,59, p=0,013. У них же обнаружена и ассоциация генотипа rs5995357-A/A с предрасположенностью к ИБС: OR 3,74, 95CI 1,14-12,31, р=0,026. В табл. 4 представлены данные по частотам гаплотипов NCF4 у мужчин и женщин. Примечательно, что несмотря на отсутствие ассоциаций изучаемых SNPs NCF4 с ИБС у мужчин, именно у представителей мужского пола выявлены ассоциации гаплотипической структуры NCF4 (общий p=0.0064), а также гаплотипов H2 (OR 1,79, 95CI 1,16-2,76, p=0,0085) и H3 (OR 1,77, 95CI 1,06-2,97, p=0,03) с предрасположенностью к ИБС при СД2, тогда как у женщин эти ассоциации не наблюдались (р>0,05).

Обсуждение

Нейтрофильный цитозольный фактор 4 (NCF4, p40-phox) представляет собой белок массой 39 кДа, состоящий из 339 аминокислот, и является одной из субъединиц НАДФН-оксидазы. Ключевой домен NCF4, PB1, отвечает за связывание с NCF1 и NCF2 и активацию сборки цитозольного комплекса NOX, в то время как домен PX обеспечивает контакт с мембранными субъединицами СҮВА и СҮВВ, составляя вместе с RAC1 и RAC2 мультикомпонентную НАДФН-оксидазу. Изоформы фермента работают в специализированных редокс-активных эндосомах, формирующихся в ответ на внеклеточные стимулы, такие как глюкоза, жирные кислоты, факторы роста, цитокины и позволяют обеспечить точечное действие образующихся АФК [23]. Основной функцией комплекса является генерация

Таблица 1

Анализ ассоциации аллелей и генотипов полиморфных вариантов гена *NCF4* с риском развития СД2 и предрасположенностью к ИБС при СД2

SNP ID rena NCF4		Контроль	Больные СД2			Больные С,	Д2 (n=1579)		
	Генотип (n=1627), n (%)		(n=1579), n (%)	OR (95Cl) ¹	p^2	без ИБС (n=1131), n (%)	с ИБС (n=448), n (%)	OR (95Cl) ¹	p^2
		Пред	расположенност	ь к СД2	Предрасположенность к ИБС при СД2				
rs5995355 A>G	A/A	1341 (84)	1358 (86,2)	1.00	0,25	836 (86,5)	380 (85)	1,00	0,37
	A/G	247 (15,5)	210 (13,3)	1,00		127 (13,1)	64 (14,3)		
	G/G	9 (0,6)	7 (0,4)	0,50 (0,15-1,64)		4 (0,4)	3 (0,7)	2,14 (0,42-10,93)	
	G	8,3	7,1	0,85 (0,70-1,02)	0,085	7,0	7,8	1,14 (0,84-1,53)	0,46
	T/T	1202 (75,2)	1208 (76,9)	1.00	0,071	738 (76,9)	342 (76,3)	1,00	
rs5995357	T/A	370 (23,1)	343 (21,9)	1,00		213 (22,2)	97 (21,6)		0,10
T>A	A/A	26 (1,6)	19 (1,2)	0,54 (0,27-1,06)		9 (0,9)	9 (2)	2,27 (0,85-6,03)	
	A	13,2	12,1	0,91 (0,78-1,05)	0,20	12,0	12,8	1,08 (0,85-1,37)	0,59
	G/G	466 (29,1)	444 (28,2)	1.00	0,79	259 (26,8)	138 (30,9)	1,00	0,58
rs1883112 G>A	G/A	809 (50,6)	810 (51,4)	1,00		516 (53,4)	210 (47)		
	A/A	324 (20,3)	322 (20,)	0,97 (0,80-1,18)		192 (19,9)	99 (22,1)	1,08 (0,81-1,45)	
	A	45,6	46,1	1,02 (0,93-1,13)	0,65	46,5	45,6	0,96 (0,82-1,13)	0,66
	T/T	644 (40,4)	686 (43,7)	1.00	0,45	431 (44,9)	187 (41,7)	1,00	0,0095
rs4821544	T/C	745 (46,7)	690 (43,9)	1,00		426 (44,3)	192 (42,9)		
T>C	C/C	207 (13)	195 (12,4)	0,91 (0,72-1,15)		104 (10,8)	69 (15,4)	1,59 (1,12-2,26)	
	С	36,3	34,4	0,92 (0,86-1,02)	0,11	33,0	36,8	1,18 (1,01-1,40)	0,045
	T/T	1158 (73,7)	982 (72,4)	1.00	0,65	596 (71,2)	273 (74,4)	1.00	
rs760519	T/C	376 (23,9)	349 (25,7)	1,00		225 (26,9)	90 (24,5)	1,00	0,20
T>C	C/C	37 (2,4)	26 (1,9)	0,88 (0,50-1,55)		16 (1,9)	4 (1,1)	0,49 (0,16-1,55)	
	С	14,3	14,8	1,04 (0,90-1,20)	0,62	15,4	13,4	0,85 (0,66-1,09)	0,23
	C/C	1087 (68)	1076 (68,4)	1.00	0,98	658 (68,2)	305 (68,2)	1,00	0,60
rs729749 C>T	C/T	463 (29)	454 (28,8)	1,00		284 (29,4)	129 (28,9)		
	T/T	48 (3)	44 (2,8)	1,01 (0,64-1,60)		23 (2,4)	13 (2,9)		
	Т	17,5	17,2	0,98 (0,86-1,12)	0,77	17,1	17,3	1,02 (0,82-1,25)	0,88
rs2075938 G>A	G/G	913 (57,9)	935 (59,9)	1.00	0,096	581 (60,8)	261 (59)	1.00	0,98
	G/A	575 (36,4)	528 (33,9)	1,00		316 (33)	156 (35,3)	1,00	
	A/A	90 (5,7)	97 (6,2)	1,33 (0,95-1,85)		59 (6,2)	25 (5,7)	0,99 (0,60-1,66)	
	A	23,9	23,1	0,96 (0,85-1,08)	0,47	22,7	23,3	1,03 (0,86-1,25)	0,72
rs2075939 C>T	C/C	1153 (72,8)	1114 (71,7)	1.00	0,53	683 (71,6)	310 (70,6)	1.00	0,50
	C/T	387 (24,4)	406 (26,1)	1,00		251 (26,3)	122 (27,8)	1,00	
	T/T	44 (2,8)	33 (2,1)	0,85 (0,51-1,41)		20 (2,1)	7 (1,6)	0,73 (0,29-1,83)]
	Т	15,0	15,2	1,02 (0,88-1,17)	0,82	15,3	15,5	1,02 (0,82-1,27)	0,92

Примечание: ¹отношения шансов и 95 доверительные интервалы ассоциаций SNPs с указанными фенотипами с коррекцией по полу, возрасту и ИМТ; ²уровень значимости ассоциации (рецессивная модель) SNPs с указанными фенотипами с коррекцией по полу, возрасту и ИМТ.

супероксид-радикалов O_2^{-} , дисмутирующих до перекиси водорода Н₂О₂. Если супероксид-анион в основном оказывает микробицидное действие в отношении интернализированных фагоцитами микроорганизмов, то перекиси водорода отведена роль важнейшего медиатора многих сигнальных путей. Физиологический уровень Н,О, необходим для обратимого окисления белков, изменяющего их активность и способствующего организации клеточного деления, дифференцировки, миграции и ангиогенеза. Бета-клетки поджелудочной железы используют перекись водорода для поддержания окислительного фолдинга инсулина и стимуляции пролиферации бета-клеток [24]. Носительство варианта rs2075939 в гене *NCF4* (и 31 другого SNPs, данные Ensembl, www.ensembl.org) проявляется несостоятельностью реакций врожденного иммунитета и приводит к развитию редкого иммунодефицита – хронической гранулематозной болезни [25]. SNP rs729749 NCF4, также ассоциированный со снижением продукции АФК, связан с развитием ревматоидного артрита на фоне отсутствия аутоантител (ревматоидного фактора) [26]. Полиморфный вариант rs4821544 ассоциирован с повышенным риском развития болезни Крона [27], rs5995355 - колоректального рака [28], тогда как rs1883112 вовлечен в развитие кардиотоксичности при лечении острой лимфобластной анемии доксорубицином [29]. В недавнем исследовании Xing с соавт. обнаружили увеличение экспрессии гена NCF4 в нейтрофилах больных латентным аутоиммунным диабетом взрослых (LADA), что способствовало окислительному повреждению бетаклеток [21]. Данные о связи интронных полиморфизмов *NCF4* rs5995355, rs5995357, rs1883112, rs4821544, rs760519, rs729749, а также миссенс-вариантов rs2075938, rs2075939 с предрасположенностью к СД2 и ИБС, а также с биохимическими параметрами в литературе отсутствуют. Выполненное нами исследование также не обнаружило ассоциации восьми указанных SNP с риском развития СД2. Тем не менее, нам удалось установить влияние rs4821544 на уровень гликированного гемоглобина и окисленного глутатиона у больных СД2 и ИБС: носители генотипа rs4821544-C/C имели значимо более высокое содержание HbA1c и GSSG в плазме крови. Генотипы rs729749-C/T-T/T и rs2075939-C/T-T/T NCF4 ассоциировались с пониженным содержанием антиатерогенных липопротеинов высокой плотности. Гаплотипы *NCF4* при этом ассоциировались исключительно с уровнем гликированного гемоглобина у пациентов с сочетанием СД2 и ИБС.

Половой диморфизм в предрасположенности к ИБС хорошо известен и был продемонстрирован в предыдущих ассоциативных исследованиях в отношении различных генов [8,30]. Однако ассоциации rs4821544 и rs5995357 с повышенным риском ИБС у больных СД2 женщин описаны нами впервые. Со-

Таблица 2 Ассоциации гаплотипов гена *NCF4* с уровнем гликированного гемоглобина у больных с ИБС и СД2

				SN	IPs						p^2
Н	rs5995355	rs5995357	rs1883112	rs4821544	rs760519	rs729749	rs2075938	rs2075939	Частота гаплотипа	Diff (95CI), % ¹	
H1	A	T	A	Т	T	С	G	С	0,3833	0,00	
H2	A	T	G	<u>C</u>	T	С	G	С	0,2115	-0,49 (-4,65 – 3,66)	0,82
Н3	A	T	G	T	<u>C</u>	T	A	T	0,1259	-0,17 (-5,59 - 5,26)	0,95
H4	<u>G</u>	A	G	<u>C</u>	T	С	G	C	0,0613	8,67 (1,97 – 15,37)	0,011
H5	A	T	A	T	T	С	A	C	0,0406	0,79 (-7,62 – 9,19)	0,85
Н6	A	A	G	<u>C</u>	T	С	G	C	0,0335	0,45 (-8,35 – 9,24)	0,92
H7	A	T	G	T	T	С	G	С	0,0317	-0,2 (-9,5 – 9,11)	0,97
H8	A	T	G	<u>C</u>	T	T	A	С	0,0107	0,25 (-15,27 – 15,77)	0,98
Н9	A	Т	A	<u>C</u>	T	С	G	С	0,0106	0,94 (-14,77 – 16,66)	0,91
H10	A	Т	G	<u>C</u>	T	С	A	С	0,0910	6,27 (0,37 – 12,17)	0,038
Общий р									0,038		

Примечание: 1 значение разности уровня HbA1c (%) при данном гаплотипе по сравнению с референсным гаплотипом H1; 2 уровень значимости; H- гаплотип. Подчеркиванием обозначены минорные аллели.

гласно экспериментальным данным по оценке эффектов однонуклеотидных вариантов ДНК на статус метилирования генов mQTL (http://www.mqtldb.org), аллель rs4821544-С связан с гипометилированием *NCF4*, а следовательно, и с увеличением экспрессии этого гена у взрослых. Биоинформатический анализ аффинности различных транскрипционных факторов (ТФ) к полиморфным локусам гена *NCF4* (http://atsnp.biostat.wisc. edu/search) показал, что минорный аллель rs4821544-С создает участки связывания для 16 ТФ: RXRB, RXRA,

ZNF524, ZNF784, ZNF143, BCL, IRF1, IRF5, ETV3, NR2F6, NR1H, NR2F2, NR5A1, CTCF, ZBTB12 и HIN-FP. Анализ обогащения генных онтологий Gene Ontology обнаружил, что эти 16 ТФ вовлечены в сигналинг рецептора ретиноевой кислоты (р=8,93*10⁻⁵, Q=2,72*10⁻²). Примечательно, что повышение экспрессии рецептора ретиноевой кислоты в лейкоцитах крови является независимым фактором риска развития острого инфаркта миокарда [31], а низкий сывороточный уровень ретиноевой кислоты связан

Таблица 3 Стратифицированный по полу анализ ассоциаций генотипов полиморфных вариантов *NCF4* с предрасположенностью к ИБС при СД2

		Больные СД2 (n=591)				Больные С	ZД2 (n=988)		
SNP ID rena NCF4	Генотип	без ИБС (n=325), n (%)	с ИБС (n=133), n (%)	OR (95Cl) ¹	p^2	без ИБС (n=806), n (%)	с ИБС (n=315), n (%)	OR (95Cl) ¹	p^2
			Мужчины		Женщины				
	A/A	283 (871)	110 (82,7)	1,00	0,79	553 (86,1)	270 (86)	1,00	0,33
rs5995355 A>G	A/G	40 (12,3)	22 (16,5)	1,00		87 (13,6)	42 (13,4)		
	G/G	2 (0,6)	1 (0,8)	1,42 (0,11-18,01)		2 (0,3)	2 (0,6)		
	T/T	251 (77,7)	105 (79)	1.00	0,57	487 (76,5)	237 (75,2)	1,00 3,74 (1,14-12,31)	0,026
rs5995357 T>A	T/A	68 (21,1)	27 (20,3)	1,00		145 (22,8)	70 (22,2)		
	A/A	4 (1,2)	1 (0,8)	0,54 (0,06-5,08)		5 (0,8)	8 (2,5)		
	G/G	84 (25,9)	49 (36,8)	1.00		175 (27,3)	89 (28,3)	1,00	0,34
rs1883112 G>A	G/A	179 (55,1)	58 (43,6)	1,00	0,60	337 (52,5)	152 (48,4)		
J 3711	A/A	62 (19,1)	26 (19,6)	0,86 (0,50-1,49)		130 (20,2)	73 (23,2)		
	T/T	143 (44,5)	53 (39,9)	1,00	0,35	288 (45)	134 (42,5)	1.00	0,013
rs4821544 T>C	T/C	141 (43,9)	61 (45,9)	1,00		285 (44,5)	131 (41,6)	1,00	
	C/C	37 (11,5)	19 (14,3)	1,36 (0,72-2,58)		67 (10,5)	50 (15,9)	1,71 (1,12-2,59)	
	T/T	210 (72,7)	77 (71,3)	1,00	0,97	386 (70,4)	196 (75,7)	1,00	0,12
rs760519 T>C	T/C	76 (26,3)	29 (26,9)	1,00		149 (27,2)	61 (23,6)		
	C/C	3 (1)	2 (1,8)	0,96 (0,14-6,57)		13 (2,4)	2 (0,8)		
	C/C	231 (71,1)	85 (63,9)	1,00	0,96	427 (66,7)	220 (70,1)	1,00	0,57
rs729749 C>T	C/T	87 (26,8)	44 (33,1)	1,00		197 (30,8)	85 (27,1)		
	T/T	7 (2,1)	4 (3)	1,04 (0,27-4,00)		16 (2,5)	9 (2,9)		
	G/G	200 (62,1)	68 (51,9)	1,00	0,76	381 (60,1)	193 (62,1)	1,00	0,80
rs2075938 G>A	G/A	103 (32)	54 (41,2)	1,00		213 (33,6)	102 (32,8)		
	A/A	19 (5,9)	9 (6,9)	1,15 (0,47-2,77)		40 (6,3)	16 (5,1)		
	C/C	232 (72,3)	83 (63,9)	1,00	0,16	451 (71,2)	227 (73,5)	1,00	0,98
rs2075939 C>T	C/T	83 (25,9)	46 (35,4)	1,00		168 (26,5)	76 (24,6)	1,00	
	T/T	6 (1,9)	1 (0,8)	0,25 (0,03-2,27)		14 (2,2)	6 (1,9)	0,99 (0,36-2,74)	

Примечание: ¹отношения шансов и 95 доверительные интервалы ассоциаций SNPs с указанными фенотипами с коррекцией по возрасту и ИМТ; ²уровень значимости ассоциации (рецессивная модель) SNPs с указанными фенотипами с коррекцией по возрасту и ИМТ.

с высокой сердечно-сосудистой смертностью у страдающих ИБС пациентов [32]. В то же время в присутствии аллеля гѕ4821544-С в этом участке гена, теряют аффинность 9 ТФ: GATA1, ELF1, TAL1, HOXA7, GATA6, GFI1, IRF9, ETS1 и GATA3, в норме участвующие в регуляции дифференцировки гранулоцитов ($p=1,31*10^{-5}$, $Q=2,59*10^{-2}$), морфогенезе тромбоцитов ($p=4,83*10^{-6}$, $Q=3,82*10^{-2}$), коагуляции крови ($p=2,36*10^{-4}$, $Q=3,62*10^{-2}$) и ангиогенезе ($p=2,94*10^{-4}$, $Q=4,14*10^{-2}$). Фактически наличие аллеля С в локусе гѕ4821544 способствует реализации генетической программы, предрасполагающей к развитию сердечно-сосудистой патологии.

Сеть $T\Phi$ в локусе rs5995357 интересна тем, что набор ТФ, образующих участки связывания в присутствии минорного аллеля A (HNF4A, LHX8, VDF, AP1, ZNF143) вовлечен в активацию транскрипции $(p=5,98*10^{-7}, Q=9,45*10^{-3})$, тогда как набор $T\Phi$, имеющих высокую аффинность только при наличии референсного аллеля Т (REST, SOX7, SOX8, FOXG1), напротив, подавляет экспрессию гена ($p=1,58*10^{-5}$, $Q=4,17*10^{-2}$). Можно заключить, что носительство генотипа rs5995357-A/A связано с увеличением активности NCF4 и, как следствие, с повышенной продукцией АФК НАДФН-оксидазой. Гиперфункция фермента в островках Лангерганса может способствовать накоплению несвернутых белков в эндоплазматическом ретикулуме бета-клеток, тормозить их пролиферацию и активировать апоптоз. В то же время избыток АФК в сердечно-сосудистой системе служит одним из триггеров эндотелиальной дисфункции, перекисного окисления липидов и тромботических осложнений [18].

Таким образом, в проведенном исследовании впервые в русской популяции установлена ассоциация полиморфизмов rs4821544 и rs5995357 гена нейтрофильного цитозольного фактора 4 с повышенным риском развития ИБС у больных СД2 женщин. Механизм взаимосвязи данных SNPs с заболеванием объясняется более выраженным синтезом субъединицы NCF4, а значит, более высокой активностью НАДФН-оксидазы у носителей минорных аллелей rs4821544-С и rs5995357-A. Кроме того, показано несвязанное с полом влияние rs4821544-С на уровень окисленного глутатиона и гликированного гемоглобина, а также эффекты rs729749 и rs2075939 на содержание липопротеинов высокой плотности у пациентов с ИБС и СД2. Полученные данные свидетельствуют о значимом вкладе полиморфизма гена NCF4 в патогенез ИБС у пациентов с СД2 и создают научный задел для таргетной терапии и профилактики этого заболевания.

Благодарности

Автор выражает благодарность своему учителю, научному руководителю профессору Алексею Валерьевичу Полоникову за критическое прочтение рукописи, младшему научному сотруднику НИИ генетической и молекулярной эпидемиологии Елене Юрьевне Клёсовой за помощь в проведении лабораторной ча-

Таблица 4

Стратифицированный по полу анализ ассоциаций гаплотипов *NCF4* с риском развития ИБС у больных СД2

SNPs Мужчины (n=591) Женщины (n=988) rs1883112 rs729749 rs5995355 rs5995357 rs4821544 rs760519 rs2075938 rs2075939 HБольные СД2 Больные СД2 Ω R OR p^{I} p^{I} Без ИБС СИБС СИБС Без ИБС (95%CI)1 (95%CI)1 (n=325)(n=133)(n=806)(n=315)C C T G 0,4084 0,3967 H1A A T Τ 0,3175 1,00 0,4112 1,00 <u>C</u> C A T G Т G C H20,1891 0,2399 1,79(1,16-2,76)0,0085 0,1927 0,2004 1,02(0,77-1,36)0,88 H3 A T G Т <u>C</u> Τ Α Τ 1,77(1,06-2,97)0.92(0.65 - 1.29)0,1139 0,1578 0,03 0,1277 0,1150 0,61 H4G A G C T C G C 0,0515 0,0737 1.99(1.00 - 3.96)0,051 0,0545 0,0557 1,01(0,63-1,62)0,97 Т G T Т C G C H5 A 0,0594 0,0383 1,04(0,46-2,34)0,92 0,0438 0,0314 0,68(0,37-1,25)0,21 C Н6 A T T Т A C 0.0346 0.0595 2,15(0,99-4,68)0.054 0.0424 0.0325 0,66(0,35-1,22)0.18 A G Т C C <u>C</u> G 0.0387 0.0081 0.24(0.05-1.10)0.066 0.0365 0,0422 1,32(0,77-2,27)H7A Α 0.31 0,0064 0,0162 1,29(0,72-2,33)0,40 0,0086 0,0046 1,13(0,76-1,67)редкие 0,54 Общий р 0.0064 Общий р 0.45

Примечание: 1 OR, 1 – отношения шансов, 95% доверительный интервал и уровень значимости ассоциаций с поправкой на возраст и ИМТ; 2 – гаплотипы. Подчеркиванием обозначены минорные аллели.

сти работы, а также всем пациентам эндокринологического отделения Курской городской клинической больницы скорой медицинской помощи и здоровым добровольцам областной станции переливания крови, принявшим участие в исследовании.

Список литературы

- Дедов И.И., Шестакова М.В., Майоров А.Ю., Шамхалова М.Ш., Сухарева О.Ю., Галстян Г.Р. и др. Сахарный диабет 2 типа у взрослых. Сахарный диабет 2020; 23(2S): 4-102. doi. org/10.14341/DM12507.
- Volpe C.M.O., Villar-Delfino P.H., Dos Anjos P.M.F., Nogueira-Machado J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. *Cell death and disease* 2018; 9(2): 1-9. doi. org/10.1038/s41419-017-0135-z.
- Urner S., Ho F., Jha J.C., Ziegler D., Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. *Antioxidants and redox signaling* 2020; 33(6): 415-434. doi. org/10.1089/ars.2020.8047.
- Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. *Nat. Rev. Mol. Cell Biol* 2018; 19: 31–44. doi.org/10.1038/nrm.2017.89.
- Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. *Physiol. Rev.* 2018; 98: 2133–2223. doi.org/10.1152/ physrev.00063.2017.
- Onyango A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. *Oxid. Med. Cell Longev.* 2018; 4321714. doi. org/10.1155/2018/4321714.
- Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. *Nat Rev Mol Cell Biol* 2020; 21: 363– 383. doi.org/10.1038/s41580-020-0230-3.
- Bushueva O.Y. Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia. *Kardiologiia* 2020; 60(10): 1229-1229. doi.org/10.18087/cardio.2020.10.n1229.
- Бушуева О.Ю., Долженкова Е.М., Барышев А.С., Иванова Н.В., Рыжаева В.Н., Разинькова Н.С. и др. Исследование взаимосвязи полиморфизма С667T гена MTHFR с риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2015; 4: 76-80.
- Долженкова Е.М., Барышев А.С., Иванова Н.В., Бушуева О.Ю., Иванов В.П., Полоников А.В. Исследование взаимосвязи полиморфизмов-1612 5А/6А гена ММРЗ и 2003G> А гена ММРЭ с риском развития ишемической болезни сердца у русских жителей Центральной России. Курский научно-практический вестник «Человек и его здоровье» 2016; (3): 63-66. doi.org/10.21626/ vestnik/2016-3/10.
- Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2): e88-e91.
- Дедов И.И., Шестакова М.В., Майоров А.Ю., Викулова О.К., Галстян Г.Р., Кураева Т.Л. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет 2019; 22(1S1): 1-144. doi.org/10.14341/DM221S1.
- Shen E., Li Y., Li Y., Shan L., Zhu H., Feng Q. et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. *Diabetes* 2009; 58(10): 2386-2395. doi.org/10.2337/db08-0617.
- Roe N.D., Thomas D.P., Ren J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. *Diabetes, Obesity and Metabolism* 2011; 13(5): 465-473. doi. org/10.1111/j.1463-1326.2011.01369.x.

- Gray S.P., Di Marco E., Okabe J., Szyndralewiez C., Heitz F., Montezano A.C. et al. NADPH oxidase 1 plays a key role in diabetes mellitus—accelerated atherosclerosis. *Circulation* 2013; 127(18): 1888-1902. doi.org/10.1161/CIRCULATIONAHA.112.132159.
- Schiattarella G.G., Carrizzo A., Ilardi F., Damato A., Ambrosio M., Madonna M. et al. Rac1 modulates endothelial function and platelet aggregation in diabetes mellitus. *Journal of the American Heart As*sociation 2018; 7(8): e007322. doi.org/10.1161/JAHA.117.007322.
- Aggarwal H., Kanuri B.N., Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. *Oxidative Stress in Heart Diseases* Springer, Singapore 2019; P. 461-482. doi.org/10.1007/978-981-13-8273-4 21.
- Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. *Circ Res* 2018; 122: 877–902. doi.org/10.1161/CIRCRESA-HA.117.311401.
- Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y. et al. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. *PLoS ONE* 2010; 5: e15726. doi.org/10.1371/journal. pone.0015726.
- Ma Y., Li W., Yin Y., Li W. AST IV inhibits H(2)O(2)-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-beta1/Smad2 pathway. *Int. J. Mol. Med* 2015; 35: 1667–1674. doi.org/10.3892/ijmm.2015.2188.
- Xing Y., Lin Q., Tong Y., Zhou W., Huang J., Wang Y. et al. Abnormal neutrophil transcriptional signature may predict newly diagnosed latent autoimmune diabetes in adults of South China. *Frontiers in endocrinology* 2020; 11: 581902. doi.org/10.3389/fendo.2020.581902.
- 22. Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., Сакали С.Ю., Коломоец И.И., Азарова В.А. и др. Роль полиморфных вариантов гена СҮВА в патогенезе сахарного диабета 2 типа. *Медицинская генетика* 2019; 18(8): 37-48. doi.org/10.25557/2073-7998.2019.08.37-48.
- Воробьева Н.В. NADPH-оксидаза нейтрофилов и заболевания, связанные с ее дисфункцией. Иммунология 2013; 34(4): 227-232.
- Alfar E.A., Kirova D., Konantz J., Birke S., Mansfeld J., Ninov N. Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Scientific reports 2017; 7(1): 1-12. doi.org/10.1038/s41598-017-03873-9.
- 25. Matute J.D., Arias A.A., Wright N.A., Wrobel I., Waterhouse C.C., Li X.J. et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood, The Journal of the American Society of Hematology 2009; 114(15): 3309-3315. doi.org/10.1182/blood-2009-07-231498.
- Olsson L.M., Lindqvist A.K., Källberg H., Padyukov L., Burkhardt H., Alfredsson L. et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. *Arthritis research and therapy* 2007; 9(5): 1-11. doi. org/10.1186/ar2299.
- Roberts R.L., Hollis-Moffatt J.E., Gearry R.B., Kennedy M.A., Barclay M.L., Merriman T.R. Confirmation of association of IRGM and NCF4 with ileal Crohn's disease in a population-based cohort. *Genes and Immunity* 2008; 9(6): 561-565. doi.org/10.1038/gene.2008.49.
- Ryan B.M., Zanetti K.A., Robles A.I., Schetter A.J., Goodman J., Hayes R.B. et al. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer. *Inter*national journal of cancer 2014; 134(6): 1399-1407. doi.org/10.1002/ iic.28457.

- Gándara-Mireles J.A., Lares-Asseff I., Espinoza E.A.R., Blanco J.G., Font A.E.G., Hurtado L.P.C. et al. Association of genetic polymorphisms NCF4 rs1883112, CBR3 rs1056892, and ABCC1 rs3743527 with the cardiotoxic effects of doxorubicin in children with acute lymphoblastic leukemia. *Pharmacogenetics and Genomics* 2021; 31(5): 108-115. doi.org/10.1097/FPC.0000000000000428.
- Медведева М.В. Ассоциации полиморфных вариантов rs2305948 и rs1870377 гена рецептора фактора роста сосудистого эндотелия 2 типа (KDR) с риском развития ишемической болезни сердца. Научные результаты биомедицинских исследований 2021; 7(1): 32-43. doi.org/10.18413/2658-6533-2020-7-1-0-3.
- Meng H., Ruan J., Tian X., Li L., Chen W., Meng F. High retinoic acid receptor-related orphan receptor A gene expression in peripheral blood leukocytes may be related to acute myocardial infarction. Journal of International Medical Research 2021; 49(6): 1-13. doi.org/10.1177/03000605211019663.
- Liu Y., Chen H., Mu D., Li D., Zhong Y., Jiang N. et al. Association of serum retinoic acid with risk of mortality in patients with coronary artery disease. Circulation research 2016; 119(4): 557-563. doi. org/10.1161/CIRCRESAHA.116.308781.

References

- Dedov I.I., Shestakova M.V., Mayorov A.Yu., Shamkhalova M.S., Sukhareva O.Yu., Galstyan G.R. et al. Sakharnyy diabet 2 tipa u vzroslykh [Diabetes mellitus type 2 in adults]. Sakharnyy diabet [Diabetes mellitus] 2020; 23(2S): 4-102. (In Russ.) doi.org/10.14341/ DM12507
- Volpe C.M.O., Villar-Delfino P.H., Dos Anjos P.M.F., Nogueira-Machado J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. *Cell death and disease* 2018; 9(2): 1-9. doi. org/10.1038/s41419-017-0135-z.
- Urner S., Ho F., Jha J.C., Ziegler D., Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. *Antioxidants and redox signaling* 2020; 33(6): 415-434. doi. org/10.1089/ars.2020.8047.
- Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. *Nat. Rev. Mol. Cell Biol* 2018; 19: 31–44. doi.org/10.1038/nrm.2017.89.
- Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. *Physiol. Rev.* 2018; 98: 2133–2223. doi.org/10.1152/physrev.00063.2017.
- Onyango A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. *Oxid. Med. Cell Longev.* 2018; 4321714. doi. org/10.1155/2018/4321714.
- Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. *Nat Rev Mol Cell Biol* 2020; 21: 363– 383. doi.org/10.1038/s41580-020-0230-3.
- Bushueva O.Y. Genetic Variants rs1049255 CYBA and rs2333227 MPO are Associated with Susceptibility to Coronary Artery Disease in Russian Residents of Central Russia. *Kardiologiia* 2020; 60(10): 1229-1229. doi.org/10.18087/cardio.2020.10.n1229.
- Bushueva O.Yu., Dolzhenkova E.M., Baryshev A.S., Ivanova N.V., Ryzhaeva V.N., Razinkova N.S. et al. Issledovaniye vzaimosvyazi polimorfizma C667T gena MTHFR c riskom razvitiya ishemicheskoy bolezni serdtsa u russkikh zhiteley Tsentral'noy Rossii [The relationship between polymorphism c667t of the MTHFR gene and ischemic heart disease risk in Russian population of Central Russia]. Kurskiy nauchno-prakticheskiy vestnik «Chelovek i yego zdorov'ye» [Man and his health] 2015; 4: 76-80. (In Russ.)
- Dolzhenkova E.M., Baryshev A.S., Ivanova N.V., Bushueva O.Yu., Ivanov V.P., Polonikov A.V. Issledovaniye vzaimosvyazi polimorfizmov-1612 5A/6A gena MMP3 i 2003G> A gena MMP9 c riskom razvitiya ishemicheskoy bolezni serdtsa u russkikh zhiteley Tsentral'noy

- Rossii [The relationship between -1612 5A/6A polymorphism of MMP3 gene and 2003G>A of MMP9 gene and coronary heart disease risk in population of Central Russia]. Kurskiy nauchno-prakticheskiy vestnik «Chelovek i yego zdorov'ye» [Man and his health] 2016; (3): 63-66. (In Russ.) doi.org/10.21626/vestnik/2016-3/10.
- Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2): e88-e91.
- Dedov I.I., Shestakova M.V., Mayorov A.Yu., Vikulova O.K., Galstyan G.R., Kuraeva T.L. et al. Algoritmy spetsializirovannoy meditsinskoy pomoshchi bol'nym sakharnym diabetom [Standards of specialized diabetes care]. Sakharnyy diabet [Diabetes mellitus] 2019; 22(1S1): 1-144. (In Russ.) doi.org/10.14341/DM221S1.
- Shen E., Li Y., Li Y., Shan L., Zhu H., Feng Q. et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. *Diabetes* 2009; 58(10): 2386-2395. doi.org/10.2337/db08-0617.
- Roe N.D., Thomas D.P., Ren J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. *Diabetes, Obesity and Metabolism* 2011; 13(5): 465-473. doi. org/10.1111/j.1463-1326.2011.01369.x.
- Gray S.P., Di Marco E., Okabe J., Szyndralewiez C., Heitz F., Montezano A.C. et al. NADPH oxidase 1 plays a key role in diabetes mellitus—accelerated atherosclerosis. *Circulation* 2013; 127(18): 1888-1902. doi.org/10.1161/CIRCULATIONAHA.112.132159.
- Schiattarella G.G., Carrizzo A., Ilardi F., Damato A., Ambrosio M., Madonna M. et al. Rac1 modulates endothelial function and platelet aggregation in diabetes mellitus. *Journal of the American Heart Association* 2018; 7(8): e007322. doi.org/10.1161/JAHA.117.007322.
- Aggarwal H., Kanuri B.N., Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. *Oxidative Stress in Heart Diseases* Springer, Singapore 2019; P. 461-482. doi.org/10.1007/978-981-13-8273-4
- Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. *Circ Res* 2018; 122: 877–902. doi.org/10.1161/CIRCRESA-HA 117 311401
- Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y. et al. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE 2010; 5: e15726. doi.org/10.1371/journal.pone.0015726.
- Ma Y., Li W., Yin Y., Li W. AST IV inhibits H(2)O(2)-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-beta1/Smad2 pathway. *Int. J. Mol. Med* 2015; 35: 1667–1674. doi.org/10.3892/ijmm.2015.2188.
- Xing Y., Lin Q., Tong Y., Zhou W., Huang J., Wang Y. et al. Abnormal neutrophil transcriptional signature may predict newly diagnosed latent autoimmune diabetes in adults of South China. *Frontiers in endocrinology* 2020; 11: 581902. doi.org/10.3389/fendo.2020.581902.
- Azarova Yu.E., Klyosova E.Yu., Samgina T.A., Sakali S.Yu., Kolomoets II, Azarova V.A. Rol' polimorfnykh variantov gena CYBA v patogeneze sakharnogo diabeta 2 tipa [The role of polymorphic variants of the CYBA gene in the pathogenesis of type 2 diabetes]. Meditsinskaya genetika [Medical Genetics] 2019; 18 (8):37-48. (In Russ.) doi.org. 10.25557/2073-7998.2019.08.37-48.
- Vorobjeva N.V. NADPH-oksidaza neytrofilov i zabolevaniya, svyazannyye s yeye disfunktsiyey [NADPH oxidase of neutrophils and diseases associated with its dysfunction]. Immunologiya [Immunology] 2013; 34(4): 227-232. (In Russ.)
- Alfar E.A., Kirova D., Konantz J., Birke S., Mansfeld J., Ninov N. Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Scientific reports 2017; 7(1): 1-12. doi.org/10.1038/s41598-017-03873-9.
- Matute J.D., Arias A.A., Wright N.A., Wrobel I., Waterhouse C.C., Li X.J. et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective

- defects in neutrophil NADPH oxidase activity. Blood, The Journal of the American Society of Hematology 2009; 114(15): 3309-3315. doi.org/10.1182/blood-2009-07-231498.
- Olsson L.M., Lindqvist A.K., Källberg H., Padyukov L., Burkhardt H., Alfredsson L. et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis research and therapy 2007; 9(5): 1-11. doi.org/10.1186/ar2299.
- Roberts R.L., Hollis-Moffatt J.E., Gearry R.B., Kennedy M.A., Barclay M.L., Merriman T.R. Confirmation of association of IRGM and NCF4 with ileal Crohn's disease in a population-based cohort. *Genes and Immunity* 2008; 9(6): 561-565. doi.org/10.1038/gene.2008.49.
- Ryan B.M., Zanetti K.A., Robles A.I., Schetter A.J., Goodman J., Hayes R.B. et al. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer. *International journal of cancer* 2014; 134(6): 1399-1407. doi.org/10.1002/ ijc.28457.
- Gándara-Mireles J.A., Lares-Asseff I., Espinoza E.A.R., Blanco J.G., Font A.E.G., Hurtado L.P.C. et al. Association of genetic polymorphisms NCF4 rs1883112, CBR3 rs1056892, and ABCC1 rs3743527

- with the cardiotoxic effects of doxorubicin in children with acute lymphoblastic leukemia. *Pharmacogenetics and Genomics* 2021; 31(5): 108-115. doi.org/10.1097/FPC.000000000000428.
- 30. Medvedeva M.V. Assotsiatsii polimorfnykh variantov rs2305948 i rs1870377 gena retseptora faktora rosta sosudistogo endoteliya 2 tipa (KDR) s riskom razvitiya ishemicheskoy bolezni serdtsa [Associations of rs2305948 and rs1870377 polymorphic variants of the vascular endothelial growth factor receptor type 2 (KDR) gene with the risk of coronary heart disease]. Nauchnyye rezul'taty biomeditsinskikh issledovaniy [Research Results in Biomedicine] 2021; 7(1): 32-43. (In Russ.) doi.org/10.18413/2658-6533-2020-7-1-0-3.
- Meng H., Ruan J., Tian X., Li L., Chen W., Meng F. High retinoic acid receptor-related orphan receptor A gene expression in peripheral blood leukocytes may be related to acute myocardial infarction. Journal of International Medical Research 2021; 49(6): 1-13. doi.org/10.1177/03000605211019663.
- Liu Y., Chen H., Mu D., Li D., Zhong Y., Jiang N. et al. Association of serum retinoic acid with risk of mortality in patients with coronary artery disease. Circulation research 2016; 119(4): 557-563. doi. org/10.1161/CIRCRESAHA.116.308781.