Протекторные свойства экстракта Achillea millefolium L. относительно токсического и генотоксического воздействия этопозида на примере модельного объекта Drosophila melanogaster

Антосюк О.Н., Орлова В.Н.

Уральский федеральный университет имени первого Президента России Б.Н Ельцина 620002, г. Екатеринбург, ул. Мира, 19.

Используя различные концентрации экстракта Achillea millefolium L. выбрана 5%, демонстрирующая более выраженные протекторные свойства относительно токсического воздействия этопозида. Установили стимуляцию плодовитости при выращивании особей на питательной среде с экстрактом. Генотоксических проявлений у экстракта A. millefolium L. в 5% концентрации не обнаружили.

Ключевые слова: этопозид, экстракт, SMART, Drosophila

Для цитирования: Антосюк О.Н., Орлова В.Н. Протекторные свойства экстракта *Achillea millefolium L*. относительно токсического и генотоксического воздействия этопозида на примере модельного объекта *Drosophila melanogaster*. *Медицинская генетика* 2020; 19(9): 83-84. **DOI:** 10.25557/2073-7998.2020.09.83-84

Автор для корреспонденции: Антосюк Ольга Николаевна; e-mail: Antosuk-olga@mail.ru

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила: 20.05.2020

The protective properties of the Achillea millefolium L. extract are relative to the toxic and genotoxic effects of etoside on the example of Drosophila melanogaster

Antosyuk O.N., Orlova V.N.

Ural Federal University named after the first President of Russia B.N. Yeltsin Mira str. 19, Ekaterinburg, 620002, Russia

Using different concentrations of *Achillea millefolium* L. extract selected 5% demonstrating more pronounced protective properties regarding the toxic effects of etoposide. They have established stimulation of fertility in the cultivation of individuals on a nutrient medium with extract. Genotoxic manifestations in *A. millefolium* L. in 5% concentration were not found.

Keywords: etoposide, extract, SMART, Drosophila

For citation: Antosyuk O.N., Orlova V.N. The protective properties of the *Achillea millefolium L*. extract are relative to the toxic and genotoxic effects of etoside on the example of *Drosophila melanogaster*. *Medical genetics*. 2020; 19(9): 83-84. (In Rus) **DOI:** 10.25557/2073-7998.2020.09.83-84

Corresponding author: Antosyuk Olga Nikolaevna; e-mail: Antosuk-olga@mail.ru

Funding. The study had no sponsorship.

Conflict of Interest. Authors declare no conflict of interest.

Accepted: 20.05.2020

аспространенность онкологических заболеваний требует, как поиска новых лекарственных средств, так и более щадящее использование уже зарекомендовавших себя цитостатков. Последние характеризуется не только основным действием, направленным на борьбу с опухолью, но и неблагоприятными побочными эффектами: токсическим и генотоксическим. Для снижения подобного рода эффектов можно применять адаптогены и протекторы. В качестве протекторов могут выступать другие лекарственные претекторов

параты, антагонисты и различные БАДы. Немалая роль отводится экстрактам лекарственных растений [1].

Несмотря на свою изученность в плане биохимии, многие аспекты протекторного действия остаются не освещенными. В качестве активного цитостатика был выбран этопозид — алкалоид растительного происхождения, ингибитор топоизомеразы II, по причине высокого токсического воздействия и генетической активности. Achillea millefolium L. использовался и ранее в качестве активного компонента как отдель-

но применяемого, так и совместно с другими факторами воздействия, например, ионизирующими излучениями [2]. Комплексное проявление протекторных свойств для данного экстракта остаётся не проанализированным. К тому же, различные концентрации экстракта могут быть по-разному эффективны по отношению к конкретному лекарственное препарату. В связи с чем, предполагалось протестировать антитоксические и антигенотоксические свойства экстракта *А. millefolium* L. в концентрациях 5%, 7,5% и 10% как самого по себе, так и совместно с противоопухолевым препаратом этопозидом.

Материалы и методы

В работе использовались лабораторные линии Drosophila melanogaster: Oregon-R (для определения ЛД) и мутантные линии yellow и white singed 3 (для тестирования генотоксического эффекта). Экстракт А. millefolium L. добавляли в питательную среду Альдерстона (250 мл воды, 25 г глюкозы, 25 г дрожжей, 2 г агара) в концентрациях 5 %, 7,5%, 10% либо отдельно, либо совместно с этопозидом (в концентрации 800 мкг/ кг питательной среды). Дополнительно проводились пробы, содержащие этиловый спирт в соответствующих концентрациях, этопозид сам по себе и контроль. В каждом эксперименте для определения ЛД использовали по 300 личинок и после завершения развития особей вели расчёт по пупариям. Для оценки генотоксичности использовали гибридных гетерозиготных по генам yellow и singed самок F₁, полученных от скрещивания самок vellow и самцов white singed. Анализировали частоту появления волосков типа yellow или singed на фоне нормальных по цвету и прямых. Для статистической обработки использовали метод х-квадрат и критерий Стьюдента в программе Statistica 10.

Результаты

В отношении изменения токсического воздействия этопозида экстракт обладает протекторными свойствами, что можно наблюдать во всех вариантах экспериментальных концентраций: 5%, 7,5% и 10%. При использовании 10% концентрации экстракта совместно с этопозидом ЛД = 31%, тогда как при воздействии только цитостатиком ЛД = 46,33%. Важно отметить, что с увеличением концентрации экстракта значение ЛД также увеличивается, достигая при 10% значения 51,67%.

Уровень фертильности особей тестировали на самой маленькой из используемых в работе концентраций, а именно 5%, но разбили на две отдельные экспе-

риментальные группы: экстракт вегетативных частей и экстракт цветочных частей. Фертильность особей как после экстракта вегетативных частей растения, так и цветочных частей статистически достоверно увеличивалась по отношению к контрольной группе. При этом экстракт из вегетативных частей был эффективнее, т.к. средняя индивидуальная плодовитость составила 18,67, в случае применения экстракта цветочной части -16,92, при контрольном значении -6,83.

Для определения возможного применения экстракта в качестве антигенотоксиканта его предварительно необходимо было протестировать на отсутствие генотоксических свойств. Для теста были выбраны вегетативные и цветочные части растения A. millefolium L. в 5% концентрации. Показали, что в случае с цветочными частями не зарегистрировали ни одного проявления мутагенеза и рекомбинации у 300 проанализированным самок дрозофилы (χ^2 =0,005 при p=0,944). В группе, где тестировали экстракт из вегетативных частей растения наблюдали появление 1 пятна singed на 369 гибридных самок, что составило 0,27% проявлений мутагенеза и рекомбинации ($\chi^2=0.418$ при p=0.518). Полученные данные свидетельствуют об отсутствии генотоксических проявлений экстракта в 5% концентрации, что в свою очередь предполагает его оптимальное использование в качестве возможного антигенотоксиканта. Этопозид же является выраженным генотоксикантом. Его свойства в изменении частоты мутаций и рекомбинаций выявили при концентрации 400 мкг/кг питательной среды, но они являются маловыраженными (из 499 особей пятна типа singed обнаружены у 11, что составило частоту мутагенеза 2,2% (χ^2 =4,615 при p=0,032)).

В ходе работы установили, что концентрация этопозида 800 мкг/кг питательной среды вызывает хромосомные аберрации, что проявляется в появлении
нетипичных фенотипов и характеризуется высокой
генотоксичностью. Из трех проанализированных концентраций экстракта Achillea millefolium L. в качестве
предполагаемого протектора оптимально подходит 5%.
Данная концентрация экстракта не является генотоксичной, а также увеличивает фертильный потенциал особей при совместном применении с этопозидом.

Литература/ References

- Düsman E., de Almeida I.V., Coelho A.C., Balbi T.J., Düsman Tonin L.T., Vicentini V.E. Antimutagenic Effect of Medicinal Plants Achillea millefolium and Bauhinia forficata In Vivo. *Evid. Based Complement. Alternat. Med.* 2013. doi: 10.1155/2013/893050.
- Shahani S., Rostamnezhad M., Ghaffari-Rad V., Ghasemi A., Allahverdi Pourfallah T., Hosseinimehr S.J. Radioprotective Effect of Achillea millefolium L Against Genotoxicity Induced by Ionizing Radiation in Human Normal Lymphocytes. *Dose Response* 2015; (13): #1. doi: 10.1177/1559325815583761.